共检索到 11

Olive oil (OO) has longstanding significance in human history, particularly in the Mediterranean region, where it has been a cornerstone of diet, economy, and culture. This history adds to modern evidence-based knowledge. Background: The Mediterranean diet (MD), rich in plant-based foods and OO, has been extensively associated with improved cardiometabolic and cognitive health. Recent interest has emerged in understanding how intermittent fasting protocols may enhance these effects. Still, the quality of OO does not only lie in the extraction process; it is also dependent on the tree variety, the soil, and the agricultural practices, ending with the way in which the finished product is stored and consumed. Objectives: This review explores the synergistic potential between OO consumption and intermittent fasting, focusing on their combined impact on metabolic health, oxidative stress, and inflammatory pathways. Methods: A literature search was conducted using multiple databases to identify studies addressing the health effects of OO, fasting, and the MD. Both human and relevant preclinical studies were considered, with emphasis on those evaluating inflammatory markers, lipid metabolism, insulin sensitivity, and neuroprotective mechanisms. Results: Evidence suggests that the bioactive compounds in EVOO may potentiate the benefits of fasting by enhancing antioxidant capacity, reducing postprandial inflammation, and modulating gene expression related to cellular metabolism. Combined, these factors may support improved insulin sensitivity, reduced oxidative damage, and delayed onset of age-related diseases. Conclusions: Understanding the integrative role of OO and fasting within the MD framework could offer valuable insights for nutritional strategies aimed at preventing metabolic syndrome, type 2 diabetes, and neurodegeneration. These findings also support the need for future clinical trials exploring the timing, dosage, and dietary context in which these interventions are most effective.

期刊论文 2025-06-01 DOI: 10.3390/nu17111905

In-Situ Resource Utilization (ISRU) approaches hold significant importance in plans for space colonization. This work explores a different ISRU concept applying fast-firing, a robust and well-known industrial process, to Mars regolith simulant (MGS-1). The fast-fired specimens were compared to the ones obtained by conventional sintered under low heating rates. When the holding time at the firing temperature is longer than 15 min, fast-fired specimens exhibited higher density and flexural strength (> 35 MPa) than conventional sintering. For both processes, the bulk density values and the mechanical properties of the regolith compacts were enhanced with increasing dwell time. This was attributed to higher heating rates changing the densification/crystallization kinetics involving the basalt glass in the regolith composition. Specifically, high heating rate promotes sintering over crystallization. On these bases, fast firing can be considered a potential candidate for ISRU on Mars.

期刊论文 2025-06-01 DOI: 10.1016/j.icarus.2025.116521 ISSN: 0019-1035

The internal microstructures of rock materials, including mineral heterogeneity and intrinsic microdefects, exert a significant influence on their nonlinear mechanical and cracking behaviors. It is of great significance to accurately characterize the actual microstructures and their influence on stress and damage evolution inside the rocks. In this study, an image-based fast Fourier transform (FFT) method is developed for reconstructing the actual rock microstructures by combining it with the digital image processing (DIP) technique. A series of experimental investigations were conducted to acquire information regarding the actual microstructure and the mechanical properties. Based on these experimental evidences, the processed microstructure information, in conjunction with the proposed micromechanical model, is incorporated into the numerical calculation. The proposed image-based FFT method was firstly validated through uniaxial compression tests. Subsequently, it was employed to predict and analyze the influence of microstructure on macroscopic mechanical behaviors, local stress distribution and the internal crack evolution process in brittle rocks. The distribution of feldspar is considerably more heterogeneous and scattered than that of quartz, which results in a greater propensity for the formation of cracks in feldspar. It is observed that initial cracks and new cracks, including intragranular and boundary ones, ultimately coalesce and connect as the primary through cracks, which are predominantly distributed along the boundary of the feldspar. This phenomenon is also predicted by the proposed numerical method. The results indicate that the proposed numerical method provides an effective approach for analyzing, understanding and predicting the nonlinear mechanical and cracking behaviors of brittle rocks by taking into account the actual microstructure characteristics. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-01-01 DOI: 10.1016/j.jrmge.2024.05.044 ISSN: 1674-7755

Local site conditions may pose a significant influence on the seismic responses of submarine pipelines by altering both the offshore motion propagation and soil-structure interaction (SSI). This paper aims to provide an in-depth understanding of the influence regularity of local site conditions on the seismic performance of free-spanning submarine pipelines (FSSPs). For this purpose, a suite of underwater shaking table tests were performed to investigate the seismic responses of FSSP subjected to the offshore spatial motions at three site categories. Response comparison factor (chi R.ij${\chi }_{R.ij}$) is defined to quantify the structural response discrepancies caused by the seismic inputs at different sites. The test results indicate that responses of the studied model FSSP gradually increase as spatial offshore motions at softer soil sites are employed as inputs; and the values of chi R.ij${\chi }_{R.ij}$ vary with a maximum magnitude of up to 40%-60% for different response indices when the site soil changes from fine sand to clay. Subsequently, the corresponding numerical simulations are carried out to reproduce the seismic responses of the test model. The experimental and numerical results meet a good agreement, indicating that the developed numerical modeling method can accurately predict the seismic responses of FSSPs. Following this verified modeling method and using the p-y approach to address the SSI effect, fragility surfaces of the studied FSSP are derived in terms of PGA and site parameter VS30${V}_{S30}$ (shear-wave velocity in the top 30 m of the soil profile) via probabilistic seismic demand analyses. The impact of local site conditions on the seismic performance of the FSSP is quantitatively examined by comparing the fragility curves corresponding to various VS30${V}_{S30}$. Furthermore, a fast seismic damage assessment method is proposed for efficiently evaluating the performance of FSSPs buried in various offshore soil conditions. This approach proves beneficial for designers and decision-makers, enabling accurate estimation of seismic damage and facilitating the implementation of post-earthquake maintenance measures for FSSPs.

期刊论文 2024-11-01 DOI: 10.1002/eqe.4216 ISSN: 0098-8847

Highly-stable heavy metal ions (HMIs) appear long-term damage, while the existing remediation strategies struggle to effectively remove a variety of oppositely charged HMIs without releasing toxic substances. Here we construct an iron-copper primary battery-based nanocomposite, with photo-induced protonation effect, for effectively consolidating broad-spectrum HMIs. In FCPBN, Fe/Cu cell acts as the reaction impetus, and functional graphene oxide modified by carboxyl and UV-induced protonated 2-nitrobenzaldehyde serves as an auxiliary platform. Due to the groups and built-in electric fields under UV stimuli, FCPBN exhibits excellent affinity for ions, with a maximum adsorption rate constant of 974.26 g center dot mg-1 center dot min-1 and facilitated electrons transfer, assisting to reduce 9 HMIs including Cr2O72-, AsO2- , Cd2+ in water from 0.03 to 3.89 ppb. The cost-efficiency, stability and collectability of the FCPBN during remediation, and the beneficial effects on polluted soil and the beings further demonstrate the splendid remediation performance without secondary pollution. This work is expected to remove multi-HMIs thoroughly and sustainably, which tackles an environmental application challenge.

期刊论文 2024-09-05 DOI: 10.1016/j.jhazmat.2024.135066 ISSN: 0304-3894

Partial nitrification (PN) represents an energy-efficient bioprocess; however, it often confronts challenges such as unstable nitrite accumulation, nitrite oxidizing bacteria shocks, and slow reaction rate. This study established an acidophilic PN with self-sustained pH as low as 5.36. Over 120-day monitoring, nitrite accumulation rate (NAR) was stabilized at more than 97.9 %, and an ultra-high ammonia oxidation rate of 0.81 kg/m(3)& sdot;d was achieved. Notably, least NAR of 77.8 % persisted even under accidental nitrite oxidizing bacteria invasion, aeration delay, alkalinity fluctuations, and cooling shocks. During processing, despite detrimental effects on bacterial diversity, there was a discernible increase in acid-tolerant bacteria responsible for nitrification. Candidatus Nitrosoglobus, gradually dominated in nitrifying guild (2.15 %), with the substantially reduction or disappearance of typical nitrifying microorganisms. Acidobacteriota, a key player in nitrogen cycling of soil, significantly increased from 0.45 % to 9.98 %, and its associated nitrogen metabolism genes showed a substantial 215 % rise. AmoB emerged as the most critical functional gene influencing acidophilic PN, exhibiting significantly higher unit gene expression than other nitrification genes. Blockade tricarboxylic acid cycle, DNA damage, and presence of free nitrous acid exert substantial effects on nitrite-oxidizing bacteria (NOB), serving as internal driving forces for acidophilic PN. This highlights the reliable potential for shortening nitrogen transformation process.

期刊论文 2024-08-15 DOI: 10.1016/j.watres.2024.121921 ISSN: 0043-1354

In subtropical typhoon-prone regions, landslides are triggered by short-duration intense rainfall and prolonged periods of elevated pore-water pressure. However, fast-moving landslides pose a significant challenge for timely warning because of insufficient data on rainfall triggers and the identification of potential failure sites. Thus, our study introduces an integrated approach that combines a double-index intensity-duration (I-D) threshold, accounting for daily rainfall (R0) and 5-d effective rainfall (R5), with the MC-TRIGRS, a probabilistic physically based model, to analyze fast-moving landslide hazards at a regional scale. This approach is characterized by its innovative features: (i) it employs a double-index model to categorize rainfall events, differentiating between long-term continuous rainfall and short-term intense precipitation; (ii) it utilizes a comprehensive dataset from extensive field investigations to implement the grey wolf optimizer (GWO) -enhanced long short-term memory neural network (LSTM) to predict soil thickness distributions across the study area; and (iii) it adopts the classical Monte Carlo method to calculate failure probabilities under various rainfall scenarios, incorporating randomness in key soil parameters, such as cohesion and internal friction angle. By leveraging geotechnical data from both field and laboratory tests and integrating the accumulated knowledge, these models can be applied to the coastal mountainous basins of Eastern China, a region highly prone to landslides. Our goal was to augment the effectiveness of landslide early warning systems. Particularly, the synergistic use of rainfall empirical statistics and probabilistic physically based slope stability models is poised to bolster real-time control and risk mitigation strategies, providing a robust solution for short-term preparedness.

期刊论文 2024-04-01 DOI: 10.1007/s10346-023-02187-4 ISSN: 1612-510X

Compared with typical Earth soil, Martian soil and Mars simulant soils have distinct properties, including pH > 8.0 and high contents of silicates, iron-rich minerals, sulfates, and metal oxides. This unique soil matrix poses a major challenge for extracting microbial DNA. In particular, mineral adsorption and the generation of destructive hydroxyl radicals through cationic redox cycling may interfere with DNA extraction. This study evaluated different protocols for extracting microbial DNA from Mars Global Simulant (MGS-1), a Mars simulant soil. Two commercial kits were tested: the FastDNA SPIN Kit for soil (MP kit) and the DNeasy PowerSoil Pro Kit (PowerSoil kit). MGS-1 was incubated with living soil for five weeks, and DNA was extracted from aliquots using the kits. After extraction, the DNA was quantified with a NanoDrop spectrophotometer and used as the template for 16S rRNA gene amplicon sequencing and qPCR. The MP kit was the most efficient, yielding approximately four times more DNA than the PowerSoil kit. DNA extracted using the MP kit with 0.5 g soil resulted in 28,642-37,805 16S rRNA gene sequence reads and 30,380-42,070 16S rRNA gene copies, whereas the 16S rRNA gene could not be amplified from DNA extracted using the PowerSoil kit. We suggest that the FastDNA SPIN Kit is the best option for studying microbial communities in Mars simulant soils.

期刊论文 2024-04-01 DOI: 10.3390/microorganisms12040760

The freezing and thawing of roadbed soils in seasonal frozen zones can cause uneven settlement and other road problems, which puts road operation at risk. This paper focuses on the rapid construction of expressways and analyzes the effects of using fly ash and cement as modifiers on the physical properties and chemical composition of subgrade soil. The study found that cement admixtures can improve soil mechanical attributes and frost resistance, while also increasing the degree of fly ash hydration. And the freeze-thaw cycle process can enhance the mechanical characteristics of soils with higher cement admixture content. This is due to the development of hydrates in cement fly ash-enhanced soils during freeze?thaw cycles, resulting in a denser interior structure. The use of neural network prediction analysis showed that using ANN4-10-3 to forecast soil mechanical property parameters can produce superior results. Therefore, it is recommended to use cement fly ash-enhanced soil for roadbed construction in seasonal freezing areas, and neural network can be used to predict soil mechanical parameters.

期刊论文 2024-01-01 DOI: 10.1007/s12205-023-2077-6 ISSN: 1226-7988

Rocket launch failure rate is slightly higher than five percent. Concerned citizens are likely to protest against private-sector launches involving fission reactors. Yet, fission reactors can power long-duration lunar operations for science, observation, and in situ resource utilization. Furthermore, fission reactors are needed for rapid trans-port around the solar system, especially considering natural radiation doses for crews visiting Mars or an asteroid. A novel approach is to create nuclear fuel on the Moon. In this way, a rocket launched from the earth with no radioactive material can be fueled in outer space, avoiding the risks of spreading uranium across Earth's bio-sphere. A solution is to harvest fertile thorium on the lunar surface, then transmute it into fissile uranium using the gamma ray fog which pervades the deep sky. It is only at lunar orbit, at the very edge of cislunar space, that the Earth-launched machine becomes a nuclear thermal rocket (NTR). Thorium is not abundant, but can be con-centrated by mechanical methods because of its very high specific density relative to the bulk of lunar regolith. Thorium dioxide (ThO2) has an extremely high melting point, such that skull crucible heating can be used to separate it from supernatant magma. When filled into a graphite-lined beryllium container (brought from Earth) and set out on the lunar surface, high-energy gamma rays will liberate neutrons from the Be. After moderation by the graphite, these thermal neutrons are captured by the thorium nucleus, which is transmuted into protac-tinium (Pa91). This element can be extracted using the THOREX process, and will then decay naturally into U-233 within two or three lunar days. The uranium is oxidized and packed into fuel pellets, ready to be inserted into a non-radioactive machine, which now becomes an NTR. Additionally, hydrogen can be extracted from deposits in permanently-shadowed regions on the Moon, providing reaction mass for the NTR. A novel method of solid-state hydrogen storage, which can be entirely fabricated using in situ resources, can deliver said hydrogen to the fis-sion reactor to provide high and efficient propulsive thrust. These combined operations lead to an ultra-safe (for the Earth) means for private sector, commercial transport and power generation throughout the Solar System. With the hydrogen storage material used as radiation shielding for crewed spacecraft, and greatly-reduced transit times relative to chemical rocketry, this innovative approach could fundamentally transform how humans work, play, and explore in outer space.

期刊论文 2021-09-01 DOI: 10.1016/j.jsse.2021.07.001 ISSN: 2468-8975
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页