This paper uses the three-dimensional numerical simulation method to analyze the first deep foundation pit project directly above the operating subway in a certain area. The monitoring data were compared with the numerical results to verify the accuracy of the numerical model, and then a series of analyses were performed. The soil beneath the tunnel is the most direct object of tunnel deformation caused by the excavation of deep foundation pits above the tunnel. The rebound deformation of the soil beneath the tunnel forces the tunnel to produce an upward deformation cooperatively. Therefore, after comparing and analyzing the prevention criteria of traditional excavation measures, which were not sufficient for this project, a new method of fortification is proposed for the foundation pit above the tunnel, which is called the micro-disturbance drill pipe pre-reinforcement method (PRM) for the soil beneath the tunnel. The comprehensive parameter analysis of the PRM shows that the PRM can effectively reduce the uplift value of the tunnel, and the reinforcement effect is obvious.
PurposeA of in-service PE gas pipeline in Guocun, Beijing, was found to appear gas leaking at the electrofusion (EF) joint. This study is dedicated to reveal the material cause of EF joint failure to help with a more accurate prediction of service life of PE gas pipe and further normalize the construction of PE gas pipeline.Design/methodology/approachDefect detection was carried out on the leaking EF joint using ultrasonic phased array. The mechanical degradation and structural aging behavior was studied by tension test, FTIR technology, TG test and DSC test. The organic components in the soil surrounding the PE gas pipe failure area were qualitatively identified.FindingsThe results showed that the organic surfactants in the soil environment could accelerate the aging behavior of PE material, leading to a deterioration of mechanical properties and a serious reduction in the ability of the PE pipe and EF joint, especially at the welding defect, to resist external force.Originality/valueA novel study was conducted to investigate the failure cause of the EF joint of in-service PE gas pipe, incorporating the analysis of environmental factors and structural deterioration.
PurposeThe primary goal of this research is to evaluate the seismic performance of Asla Hocine Primary School, a heritage school building in Annaba, Algeria, to prevent additional damage during future earthquakes in the region. The study aims to guide decision-makers in strengthening weak parts or elements in the building, implementing preventive measures and ultimately reducing earthquake disaster risk by mitigating vulnerability.Design/methodology/approachThe research employs the 3Muri software to model the seismic behavior and structural failures of the school's elements. An integrated multimodal pushover analysis is used to generate the non-linear capacity curve of the school to assess its seismic performance. The seismic demand is determined based on Algerian seismic regulations, with peak ground acceleration derived from a probabilistic seismic hazard analysis of Annaba city for return periods of 100, 200 and 500 years. The study develops three seismic scenarios to evaluate performance levels and expected damage probabilities.FindingsThe study reveals that the Asla Hocine Primary School faces a high risk of damage and potential collapse under the expected seismic hazard of the region. The analysis indicates variable resilience across different seismic return periods (100, 200 and 500 years), with the performance level degrading from life safety to collapse prevention and total collapse under increasing seismic intensity. This underscores the need for targeted structural analysis and potential retrofitting to enhance the building's seismic robustness.Research limitations/implicationsThe paper encouraged to account for soil-structure interaction in similar studies, as it can significantly affect the overall seismic performance of buildings. Furthermore, conducting out-of-plane analysis when necessary can offer valuable insights into the structural behavior of specific components.Practical implicationsThe insights provided by this study contribute vital data toward conservation efforts and risk mitigation strategies for heritage structures in seismic zones. The findings are intended to guide decision-makers in implementing preventive measures and strengthening weak parts or elements in the studied school building, ultimately reducing earthquake disaster risk by mitigating vulnerability.Originality/valueThis research offers a comprehensive framework for assessing the seismic vulnerability of heritage schools using detailed modeling and analysis. It highlights the importance of considering return periods of seismic events in assessing a building's seismic performance and provides a deeper understanding of the structural response to seismic stresses at both macrostructural and individual element levels. The study emphasizes the critical need for seismic risk assessment and targeted retrofitting to preserve cultural heritage assets and ensure their continued use.
Open-ended pre-stressed high-strength concrete (PHC) pipe piles are susceptible to progressive distortion and even failure in the vicinity of the pile toe during driving into stiff soil or rock strata. This paper presents an experimental investigation conducted as part of a power plant construction in Huainan, China. After 50 piles were driven in the initial phase, the toe of 9 piles were detected as damaged using the sonic echo testing method. In the second construction phase, four piles were instrumented with longitudinal and circumferential fiber optic cables, as well as discrete strain gauges. The recorded responses of pipe piles throughout their driving process are analyzed to reveal the causes of damages. The results show that a maximum circumferential tensile stress developed at a distance of 1/6 pile length above the pile toe, with its value three times greater than that in other cross-sections. This high circumferential stress results in transverse cracks and the failure of open-ended PHC piles and is believed to be related to the formation of soil plugs. The findings provide valuable insights into performance evaluation of driven open-ended PHC piles.
Effective functioning of saltwater supply system is essential to Hong Kong government agencies. However, it has been frequently observed that steel saltwater pipes suffered from severe internal corrosion and consequently early burst accidents, which may cause high economic loss and safety concerns to the public. Therefore, by taking a sample saltwater pipe made of DN450 mild steel with internal and external walls coated with fusion bonded epoxy in Hong Kong, this paper investigates the root causes and failure mechanism for the internal corrosion of this failed steel saltwater pipe through laboratory experiments and numerical simulation analysis. Two hypotheses are proposed and validated: (1) cathodic delamination of the epoxy lining, and (2) delamination of the epoxy lining due to external mechanical loads. The results verify that the sample saltwater pipe failed due to the cathodic delamination of the epoxy lining, and the electrochemical corrosion of the inner pipe wall. Moreover, it can be concluded that external mechanical load has few significant impacts on the damage of the epoxy lining for this sample pipe. This study exemplifies the importance of an in-depth analysis on the internal corrosion of steel water pipes, especially in a highly-corrosive internal environment.
This research investigates the spatial heterogeneity of cohesion within soft clay and its implications for slope stability and post-failure analysis. In-situ cone penetration tests were conducted in alluvial soft clays to calibrate probabilistic strength properties. Slope stability analyses employed deterministic, semi-deterministic, and comprehensive probabilistic approaches, while post-failure analysis utilised the nodal integration-based particle finite element method. The undrained shear strength (cu) demonstrated a log-normal distribution (mean: 19 kPa, standard deviation: 3 kPa), with correlation lengths modeled through Bayesian inference. Treating correlation lengths as distributions resulted in a negligible 2% difference compared to using a single value for the probability of failure. Semi-deterministic analyses exhibited results similar to probabilistic analyses, offering computational advantages. Nevertheless, probabilistic analysis, considering spatial variability, provided more comprehensive insights for post-failure analysis. For a vertical slope of critical height in the studied soft clay, probabilistic analyses predicted a range of runout distances from 0 m to over 125 m. Specifically, 89% of these distances were less than 80 m, and 82% were less than 40 m. The findings contribute to an enhanced understanding of spatial variations in soil strength within soft clay slopes, providing valuable insights for future geotechnical assessments and design considerations.
In recent decades, numerous geotechnical hazards, including landslides, foundation settlements, and tunnel collapses, have been linked to block-in-matrix rock (bimrock), resulting in substantial damage. The investigation and analysis of the engineering properties and mechanical behavior of both the rock and soil have become increasingly intriguing research areas. However, analyzing bimrock remains a formidable challenge due to its inherent heterogeneity. In this study, to investigate the tensile behavior of the bimrock, the numerical method that couples discontinuous deformation analysis (DDA) and smoothed particle hydrodynamics (SPH) is improved. First, a tension damage model is implemented in SPH for simulating the tensile behavior of the soil. The effectiveness of the presented model is verified through the direct tensile test model and the Brazil disc split model as an indirect tensile test. The contact algorithm of DDA-SPH is then modified by adding a tensile contact spring to introduce tensile strength at the interface between the matrix and the rock in the bimrock. Through a simple pulling numerical model, the accuracy of this modification has been verified, and the appropriate tensile contact stiffness is discussed. Furthermore, using the proposed method, the overall tensile strength of the bimrock with respect to the interface tensile strength is investigated. Finally, the proposed numerical method is applied to the simulation of geoengineering problems, demonstrating the capacity to analyze the stability and large deformation of bimrocks.