The thermo-mechanical (TM) behaviour of the energy pile (EP) group becomes more complicated in the presence of seepage, and the mechanism by which seepage impacts the EP group remains unclear.In the current work, a 2 x 2 scale model test bench of EP group was set up to investigate the TM behaviour of EP group with seepage. The test results indicate that the heat exchange performance of EP group with seepage can be significantly enhanced, but also leads to obvious differences in the temperature distribution of pile and surrounding soil along the seepage direction, and thus causes evident differences in the mechanical properties between the front pile and the back pile in pile group. Compared with the parallel connection form, the thermal performance of EP group with the series connection form is slightly attenuated. However, the mechanical properties of various piles in the EP group differ significantly. Under the action of seepage, the mechanical balance properties of various piles in the forward series form are optimal, followed by the parallel form, and the reverse series form is the least optimal. A 3-D CFD model was established to further obtain the influence of seepage and arrangement forms on EP group. The findings indicate that seepage can not only mitigate thermal interference between distinct piles but also expedite the process of heat transfer from pile-soil to reach a state of stability. Concurrently, the thermal migration effect induced by seepage will be superimposed along the seepage direction, resulting in the elevation of thermal interference of each pile along the seepage direction, and the superposition of thermal migration effect increases with the time. Under the same seepage condition, the cross arrangement can enhance the thermal performance of EP group, optimize the temperature distribution of pile and soil, and thus the imbalance of mechanical properties among pile groups can be reduced. In addition, the concepts of thermal interference coefficient and heat exchange rate per unit soil volume are introduced to facilitate a more precise evaluation of the thermal interference degree of each pile in the pile group and the heat exchange performance under different pile arrangement forms.The standard deviation and mean value in the statistical method are used to evaluate the equilibrium of mechanical properties of pile group, which is more intuitive to compare the differences in mechanical properties of pile groups under different working conditions.
It is necessary to fully understand the settlement of high-speed railway subgrade induced by train loading to ensure the operation safety of high-speed trains. A 1:7 reduced-scale model test was designed to investigate the settlement of subgrade under two loading methods: continuous and intermittent cyclic loading. The testing results show that an increase in load amplitude enhances the load transmission effect to the bottom of the subgrade. After 105 cycles of continuous loading, the cumulative settlement of the subgrade at depth of 0, 20, and 40 cm directly below the loading range is 3.247, 1.05, and 0.09 mm, respectively, showing significant decreases with depth. A significant rebound can be observed when the applied load is removed during the intermittent loading process, which is quite different from the results under condition of continuous loading. Thus, the intermittent effect of train load on the cumulative deformation of the subgrade cannot be ignored. In addition, to better predict the cumulative settlement of the subgrade, a prediction method based on the state evolution model was proposed and used to quantitatively analyze the testing observations. Based on the state evolution model, the predicted cumulative strains at depths of 0, 20, and 40 cm were 1.218%, 0.457%, and 0.047%, respectively, which are in good agreement with the experimental results of 1.099%, 0.48%, and 0.045%, indicating that the theoretical model can accurately predict the cumulative strain of the subgrade caused by train load. Additionally, the parameters of the state evolution model can be updated in a timely manner by applying the updated monitoring data to enhance the prediction accuracy. The current work provides an alternative method for predicting the long-term cumulative settlement of subgrade induced by the train loading, and also a basis for the optimization of high-speed railway subgrade design.
Engineered loess-filled gullies, which are widely distributed across China's Loess Plateau, face significant stability challenges under extreme rainfall conditions. To elucidate the regulatory mechanisms of antecedent rainfall on the erosion and failure processes of such gullies, this study conducted large-scale flume experiments to reveal their phased erosion mechanisms and hydromechanical responses under different antecedent rainfall durations (10, 20, and 30 min). The results indicate that the erosion process features three prominent phases: initial splash erosion, structural reorganization during the intermission period, and runoff-induced gully erosion. Our critical advancement is the identification of antecedent rainfall duration as the primary pre-regulation factor: short-duration (10-20 min) rainfall predominantly induces surface crack networks during the intermission, whereas long-duration (30 min) rainfall directly triggers substantial holistic collapse. These differentiated structural weakening pathways are governed by the duration of antecedent rainfall and fundamentally control the initiation thresholds, progression rates, and channel morphology of subsequent runoff erosion. The long-duration group demonstrated accelerated erosion rates and greater erosion amounts. Concurrent monitoring demonstrated that transient pulse-like increases in pore-water pressure were strongly coupled with localized instability and gully wall failures, verifying the hydromechanical coupling mechanism during the failure process. These results quantitatively demonstrate the critical modulatory role of antecedent rainfall duration in determining erosion patterns in engineered disturbed loess, transcending the prior understanding that emphasized only the contributions of rainfall intensity or runoff. They offer a direct mechanistic basis for explaining the spatiotemporal heterogeneity of erosion and failure observed in field investigations of the engineered fills. The results directly contribute to risk assessments for land reclamation projects on the Loess Plateau, underscoring the importance of incorporating antecedent rainfall history into stability analyses and drainage designs. This study provides essential scientific evidence for advancing the precision of disaster prediction models and enhancing the efficacy of mitigation strategies.
The operational performance of energy pile (EP) group with seepage is strongly influenced by seepage parameters. In this paper, a model test system of 2 x 2 EP group with seepage is built to study the influences of seepage water level and seepage velocity on thermo-mechanical behaviour of EP group. Also, a numerical model of EP group considering seepage is developed to obtain the variations of thermo-mechanical behaviour of EP group under different seepage parameters. The findings demonstrate that an augmentation in seepage water level can enhance the heat exchange performance of EP group, but it also exacerbate the imbalance of mechanical properties between piles in the short term, in which the seepage only have a significant effect on the temperature of piles and soil below the seepage water level. Increasing seepage velocity and circulating flow rate can strengthen thermal performance of EP group and improve the equilibrium of pile axial force and displacement between the pile groups, but increasing seepage velocity also increases the imbalance of mechanical properties between the front and back rows of pile group. At the same time, compared to the circulating flow rate, the change in seepage velocity has a dominant impact on the thermo-mechanical characteristics of EP group. Moreover, when the seepage angle is within 0-45 degrees, increasing the seepage angle can effectively improve the heat transfer performance of EP group, and the temperature distribution of pile and soil is obviously different for different seepage angles, in which the mechanical properties of EP group have the best equilibrium when the seepage angle is 30 degrees for current simulation conditions.
In order to explore the influence of wheel surface structure on the trafficability of planetary rovers on soft ground, three kinds of wheels with different rigid wheel surface structures were selected for research. The basic performance parameters of the wheel on simulated planetary soil are measured and tested to explore the law of the wheel's sinkage, slip rate and traction coefficient. The results show that the wheel grouser increases the sinkage and slip rate of the wheel. The tread reduces the sinkage of the wheel, but it also reduces the traction performance of the wheel at a higher slip rate. Considering the complex working conditions of the planetary rover on the soft ground, the six-wheeled three-rocker-arm planetary rover is used to carry out passability tests in three terrains: obstacle crossing, out of sinkage and climbing. The results show that the grousers can cause disturbance and damage to the soft soil and have significant passing advantages. There may also be a slip phenomenon when crossing the obstacle, but it does not affect passing. The completely closed tread structure will cause soil accumulation between the tread and the grouser, affecting the wheel's ability to escape sinkage. This study provides a reference for the design of a rigid wheel surface structure for planetary rovers from the perspective of passing performance.
This study addresses the durability concerns of concrete subjected to wet-dry cycles, particularly focusing on the impact of different recycled aggregate (RA) replacement percentages. Concrete is increasingly used with RAs for sustainability. However, its long-term performance under environmental stress is not fully understood. The primary motivation of this study is to provide a comprehensive understanding of how varying replacement percentages of RAs influence concrete degradation, a key factor for improving material performance in real-world applications. Through a series of wet-dry cycle tests, we analyze key degradation indicators, including surface texture changes, mass loss, and compressive strength. The study findings reveal that wet-dry cycles significantly alter the concrete surface, with higher RA content leading to more extensive pore formation, cracks, and surface roughness. Initially, concrete mass increases slightly due to water absorption, but after several cycles, mass loss becomes significant, particularly for higher replacement percentages, which is attributed to internal pore damage and degradation of the interface between the RAs and cement paste. Furthermore, the compressive strength declines steadily with increasing cycles, with more severe deterioration at higher replacement percentages. This decline is primarily due to microcrack propagation and degradation of the interfacial transition zone. A degradation model is developed to quantify the relationship between RA content and durability loss, offering practical recommendations for optimizing replacement percentages to balance sustainability and durability. This study provides valuable insights into enhancing the long-term performance of concrete in environments exposed to wet-dry cycles.
The mechanics of methane hydrate-bearing sediments (MHBS) have been broadly investigated over recent years in the context of methane-gas production or climate-change effects. Their mechanical investigation has mainly been carried out using models constructed from experimental data obtained for laboratory-formed MHBS. Along with the dominant effects of hydrate saturation and morphology within the host soil pores, this study recognizes the effective pressure at which the hydrate is formed as a key factor in the MHBS mechanics. A state-of-the-art experimental study has been conducted in order to isolate the effect of the hydrate formation pressure, for use as a model parameter. Two generalized mechanical prediction models that incorporate the effect of the hydrate formation pressure are developed in this work: (a) an analytical shear strength prediction, and (b) an empiric graphical model for predicting volumetric changes along a given stress path. The models are related to a novel data representation which enables the analysis of a few individual test outcomes as a whole, through a volume-change mapping that describes the complex influence of the volumetric effect of hydrate in MHBS, under combined hydrostatic and deviatoric loading scenarios. In this study, we delve into a specific configuration of hydrate morphology, hydrate saturation, and host soil type, enabling a distinctive fundamental geotechnical investigation and the development of a conceptual modeling approach. The paper describes the approaches by which the MHBS properties can be extracted for other MHBS samples (than those examined in this work) having different host soils and hydrate pore-space morphologies.
Dynamic loading-seepage causes the migration of railway subgrade filling particles, leading to frequent engineering problems such as ballast fouling, mud pumping, settlement, and erosion. However, few studies have focused on the permeation features and internal erosion characteristics of subgrade materials, making it difficult to uncover the evolution mechanism of service performance of subgrade under complex geo-environmental conditions. Therefore, the seepage characteristics and permeability stability of subgrade materials were investigated using self-developed equipment to reveal the seepage failure mechanism under dynamic loading. The main conclusions are as follows: (1) The internal stability of the soil is affected by fluctuations in pore water pressure and hydraulic gradients in graded aggregate and gravel-sand-silt mixtures caused by dynamic loading. (2) Critical hydraulic gradients leading to the migration of fine particles (J(cr)) and seepage failure (J(F)) in graded aggregate and gravel-sand-silt mixtures are determined as follows: J(cr) =1.30 and J(F) =6.88 for graded aggregate, and J(cr) =1.23 and J(F) =2.71 for gravel-sand-silt mixtures. (3) The seepage failure process of subgrade materials can be divided into three stages under coupled action of train loading and seepage: stable seepage, dominant flow development, and seepage failure. The relationship between flow velocity and hydraulic gradient follows the Darcy's law under the low hydraulic gradient. (4) The evolution process of subgrade performance was analyzed, and the mechanisms and types of railway flood hazard were summarized. The research provides theoretical support for the design and maintenance of railway disaster prevention, and has significant engineering implications.
Structuralized cementing technology takes full advantage of non-pressure controlled grouting technology to fill pores in coarse aggregates using self-compacting material with no need for vibration or mixing. By cementing the aggregates in a structured manner, structurally cemented material has properties between those of a discrete granular material and a continuous medium. The interface between different component structures exerts an important effect on the physical properties of the whole material. In this paper, the monotonic and cyclic mechanical properties of the contact interface properties of a structurally cemented material under different normal stresses are studied by performing experiments and numerical simulations. Through the study, the deformation displacement time history and volume change with the shear process are provided, the deformation process of the sample near the contact interface during the shear process is discussed, and the shear mechanics law with the strength mechanism under the simple shear condition is summarized.
The traditional rock and soil frost heave deformation characteristics analysis test is time-consuming and expensive. Therefore, an experimental study method of rock and soil frost heave deformation characteristics based on the pore distribution model is proposed. The pore distribution model was constructed to calculate the stress intensity factor formed by the point force and the distributed gravity, and then the frost heave displacement was obtained, and the frost heave deformation characteristics were analysed. The test results show that the running time of this study is saved by at least 2 min, and the average test cost is 14,951 million Yuan. Through the results of soil strain energy release rate and soil moisture content obtained, the effectiveness of the frost heave deformation characteristic test of rock and soil is fully verified.