共检索到 5

RISTRETTO is a visible high-resolution spectrograph fed by an extreme adaptive optics (AO) system, to be proposed as a visitor instrument on ESO VLT. The main science goal of RISTRETTO is to pioneer the detection and atmospheric characterisation of exoplanets in reflected light, in particular the temperate rocky planet Proxima b. RISTRETTO will be able to measure albedos and detect atmospheric features in a number of exoplanets orbiting nearby stars for the first time. It will do so by combining a high-contrast AO system working at the diffraction limit of the telescope to a high-resolution spectrograph, via a 7-spaxel integral-field unit (IFU) feeding single-mode fibers. Further science cases for RISTRETTO include the study of accreting protoplanets such as PDS70b/c through spectrally-resolved H-alpha emission, and spatially-resolved studies of Solar System objects such as icy moons and the ice giants Uranus and Neptune. The project is in the manufacturing phase for the spectrograph sub-system, and the preliminary design phase for the AO front-end. Specific developments for RISTRETTO include a novel coronagraphic IFU combining a phase-induced amplitude apodizer (PIAA) to a 3D-printed microlens array feeding a bundle of single-mode fibers. It also features an XAO system with a dual wavefront sensor aiming at high robustness and sensitivity, including to pupil fragmentation. RISTRETTO is a pathfinder instrument in view of similar developments at the ELT, in particular the SCAO-IFU mode of ELT-ANDES and the future ELT-PCS instrument.

期刊论文 2024-01-01 DOI: 10.1117/12.3020142 ISSN: 0277-786X

In this review we discuss all the relevant solar/stellar radiation and plasma parameters and processes that act together in the formation and modification of atmospheres and exospheres that consist of surface-related minerals. Magma ocean degassed silicate atmospheres or thin gaseous envelopes from planetary building blocks, airless bodies in the inner Solar System, and close-in magmatic rocky exoplanets such as CoRot-7b, HD 219134 b and 55 Cnc e are addressed. The depletion and fractionation of elements from planetary embryos, which act as the building blocks for proto-planets are also discussed. In this context the formation processes of the Moon and Mercury are briefly reviewed. The Lunar surface modification since its origin by micrometeoroids, plasma sputtering, plasma impingement as well as chemical surface alteration and the search of particles from the early Earth's atmosphere that were collected by the Moon on its surface are also discussed. Finally, we address important questions on what can be learned from the study of Mercury's environment and its solar wind interaction by MESSENGER and BepiColombo in comparison with the expected observations at exo-Mercurys by future space-observatories such as the JWST or ARIEL and ground-based telescopes and instruments like SPHERE and ESPRESSO on the VLT, and vice versa.

期刊论文 2022-04-01 DOI: 10.1007/s11214-022-00876-5 ISSN: 0038-6308

Saturn's Moon Titan receives volatiles into the top of its atmosphere-including atomic oxygen-sourced from cryovolcanoes on Enceladus. Similar types of atmosphere exchange from one body to another, such as O-2 and O-3 sourced from TRAPPIST-1 d, could be introduced into the upper atmosphere of TRAPPIST-1 e and might be interpreted as biosignatures. We simulate this potential false-positive for life on TRAPPIST-1 e, by applying an external influx of water and oxygen into the top of the atmosphere using a coupled 1-D photochemical-climate model (Atmos), to predict atmospheric composition. In addition, synthetic spectral observations are produced using the Planetary Spectrum Generator for the James Webb Space Telescope, Origins Space Telescope, Habitable Exoplanet Observatory and Large Ultra-violet/Optical/Infrared Surveyor to test the detectability of abiotic-generated O-2 and O-3 in the presence of abiotic and biotic surface fluxes of CH4. We determine that the incoming flux of material needed to trigger detection of abiotic O-2/O-3 by any of these observatories is more than two orders of magnitude (1 x 10(12) molecules/cm(2)/s) above what is physically plausible.

期刊论文 2022-03-01 DOI: 10.1029/2021JE006853 ISSN: 2169-9097

RISTRETTO is a visible high-resolution spectrograph fed by an extreme adaptive optics (XAO) system, to be proposed as a visitor instrument on ESO VLT. The main science goal of RISTRETTO is the detection and atmospheric characterization of exoplanets in reflected light, in particular the temperate rocky planet Proxima b. RISTRETTO will be able to measure albedos and detect atmospheric features in a number of exoplanets orbiting nearby stars for the first time. It will do so by combining a high-contrast AO system working at the diffraction limit of the telescope to a high-resolution spectrograph, via a 7-spaxel integral-field unit (IFU) feeding single-mode fibers. Further science cases for RISTRETTO include the study of accreting protoplanets such as PDS 70 b & c through spectrally-resolved Hff emission; and spatially-resolved studies of Solar System objects such as icy moons and the ice giants Uranus and Neptune. The project is in an advanced design phase for the spectrograph and IFU/fiber-link sub-systems, and a preliminary design phase for the AO front-end. Construction of the spectrograph and IFU/fiber-link will start at the end of 2022. RISTRETTO is a pathfinder instrument in view of similar developments at ESO ELT, in particular the SCAO-IFU mode of ELT-ANDES and the future ELT-PCS instrument.

期刊论文 2022-01-01 DOI: 10.1117/12.2627923 ISSN: 0277-786X

In this chapter, we review the contribution of space missions to the determination of the elemental and isotopic composition of Earth, Moon and the terrestrial planets, with special emphasis on currently planned and future missions. We show how these missions are going to significantly contribute to, or sometimes revolutionise, our understanding of planetary evolution, from formation to the possible emergence of life. We start with the Earth, which is a unique habitable body with actual life, and that is strongly related to its atmosphere. The new wave of missions to the Moon is then reviewed, which are going to study its formation history, the structure and dynamics of its tenuous exosphere and the interaction of the Moon's surface and exosphere with the different sources of plasma and radiation of its environment, including the solar wind and the escaping Earth's upper atmosphere. Missions to study the noble gas atmospheres of the terrestrial planets, Venus and Mars, are then examined. These missions are expected to trace the evolutionary paths of these two noble gas atmospheres, with a special emphasis on understanding the effect of atmospheric escape on the fate of water. Future missions to these planets will be key to help us establishing a comparative view of the evolution of climates and habitability at Earth, Venus and Mars, one of the most important and challenging open questions of planetary science. Finally, as the detection and characterisation of exoplanets is currently revolutionising the scope of planetary science, we review the missions aiming to characterise the internal structure and the atmospheres of these exoplanets.

期刊论文 2020-10-22 DOI: 10.1007/s11214-020-00736-0 ISSN: 0038-6308
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页