Expansive clay soil is known to cause damage to pavements due to its volume fluctuations with changes in moisture content, a phenomenon observed globally in many countries. Implementing suitable stabilisation treatments is crucial for improving the mechanical and hydraulic properties of the expansive clay subgrade. While cement and lime have traditionally been widely used as soil stabilisers, there is a growing emphasis on sustainable engineering due to increased awareness of global warming. Seeking alternative green and sustainable materials for soil stabilisation is demanded now, and one such alternative is using ethylene-vinyl acetate (EVA) copolymer emulsion. However, the use of EVA copolymer emulsion for stabilising expansive clay has been relatively underexplored in existing studies. This study evaluates the feasibility of utilising EVA copolymer emulsion for stabilising expansive clay subgrade through comprehensive laboratory tests to assess the mechanical (compaction, unconfined compressive strength, California bearing ratio, resilient modulus, and direct shear), hydraulic (soil-water retention curve and swellshrinkage), and micro-chemical (thermogravimetric analyses and scanning electron microscopic) performance of the soil. The experimental results indicate that the inclusion of 1 % EVA copolymer emulsion into the expansive clay provided the highest mechanical properties, resulting in an increase in the unconfined compressive strength, soaked California bearing ratio, resilient modulus, and cohesion by 8.8 %, 177.8 %, 35.8 % and 19.4 %, respectively. Swell-shrinkage behaviour was also improved with the addition of EVA copolymer, with 1 % EVA copolymer presenting the lowest swell-shrinkage index of 3.19 %/pF (14 % decrease in shrink-swell potential compared to the untreated clay).
Currently, utilization of hydrophilic polyurethane (W-OH) materials for slope protection in arid areas has proved to be a cost-effective protocol. The treatment effect highly depends on the interfacial performance between the W-OH treated and the original sandstone. This study aims to investigate the corresponding shear strength and its long-term performance under dry-wet cycles under the arid environment. The results from the direct shear test indicate the interface shear strength increases with W-OH solution concentration and decreases with the increase of water content of the Pisha sandstone. Further investigations under dry-wet cycles indicate the interface cohesion is obviously weakened by the dry-wet cycles, while the influence on the internal friction angle is not obvious. The correlation between the degradation level and the dry-wet cycles can be well fitted with the inverted Scurve using two combined exponential functions. Furthermore, the ethylene-vinyl acetate (EVA) content is utilized to enhance the durability performance under dry-wet cycles. It is found the EVA can obviously improve the bonding property and the resistance to dry-wet cycles. This study's results can serve as a solid base for the application of W-OH materials to resolve the soil erosion in the arid region.
This work studied biocomposites based on a blend of low-density polyethylene (LDPE) and the ethylene-vinyl acetate copolymer (EVA), filled with 30 wt.% of cellulosic components (microcrystalline cellulose or wood flour). The LDPE/EVA ratio varied from 0 to 100%. It was shown that the addition of EVA to LDPE increased the elasticity of biocomposites. The elongation at break for filled biocomposites increased from 9% to 317% for microcrystalline cellulose and from 9% to 120% for wood flour (with an increase in the EVA content in the matrix from 0 to 50%). The biodegradability of biocomposites was assessed both in laboratory conditions and in open landfill conditions. The EVA content in the matrix also affects the rate of the biodegradation of biocomposites, with an increase in the proportion of the copolymer in the polymer matrix corresponding to increased rates of biodegradation. Biodegradation was confirmed gravimetrically by weight loss, an X-ray diffraction analysis, and the change in color of the samples after exposition in soil media. The prepared biocomposites have a high potential for implementation due to the optimal combination of consumer properties.