共检索到 216

Legumes are a vital component of agriculture, providing essential nutrients to both humans and soil through their ability to fix atmospheric nitrogen. However, the production of legume crops is often hindered by various biotic and abiotic stresses, limiting their yield and nutritional quality of crops by damaging plant tissues, which can result in lower protein content, reduced levels of essential vitamins and minerals, and compromised seed quality. This review discusses the recent advancements in technologies that are revolutionizing the field of legume crop improvement. Genetic engineering has played a pivotal role enhancing legume productivity. Through the introduction of genes encoding for enzymes involved in nitrogen fixation, leading to higher yields and reducing the reliance on synthetic fertilizers. Additionally, the incorporation of genes conferring disease and pest resistance has significantly reduced the need for chemical pesticides, making legume cultivation more sustainable and environmentally friendly. Genome editing technologies, such as CRISPR-Cas9, have opened new avenues for precision breeding in legumes. Marker-assisted selection and genomic selection are other powerful tools that have accelerated the breeding process. These techniques have significantly reduced time and resources required to develop new legume varieties. Finally, advancement technologies for legume crop improvement are aid and enhancing the sustainability, productivity, and nutritional quality of legume crops.

期刊论文 2025-12-31 DOI: 10.1080/23311932.2024.2446652 ISSN: 2331-1932

The frequent occurrence of earthquakes worldwide has rendered highway slope protection projects highly vulnerable to damage from seismic events and their secondary disasters. This severely hampers the smooth implementation of post-disaster rescue and recovery efforts. To address this challenge, this study proposes a comprehensive method for assessing seismic losses in slope protection projects, incorporating factors such as topography and elevation to enhance its universality. The method categorizes seismic losses into two main components: damage to protection structures and costs associated with landslide and rockfall clearance and transportation. This study estimates the cost range for common protection structures and clearance methods under general conditions based on widely recognized quota data in China. It establishes criteria for classifying the damage states of protection structures and provides loss ratio values based on real-world seismic examples and expert experience, constructing a model for assessing damage losses. Additionally, by summarizing the geometric characteristics of soil and rock accumulations on road surfaces, a method for estimating landslide volumes is proposed, considering the dynamic impact of slope gradients on clearance and transportation volumes, and a corresponding cost assessment model for clearance and transportation is developed. The feasibility and reliability of the proposed method are verified through two case studies. The results demonstrate that the method is easy to implement and provides a scientific basis for improving relevant standards and practices. It also offers an efficient and scientific tool for loss assessment to industry practitioners.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109524 ISSN: 0267-7261

Subsea pipelines in Arctic environments face the risk of damage from ice gouging, where drifting ice keels scour the seabed. To ensure pipeline integrity, burial using methods like ploughs, mechanical trenchers, jetting, or hydraulic dredging is the conventional protection method. Each method has capabilities and limitations, resulting in different trench profiles and backfill characteristics. This study investigates the influence of these trenching methods and their associated trench geometries on pipeline response and seabed failure mechanisms during ice gouging events. Using advanced large deformation finite element (LDFE) analyses with a Coupled Eulerian-Lagrangian (CEL) algorithm, the complex soil behavior, including strain-rate dependency and strainsoftening effects, is modeled. The simulations explicitly incorporate the pipeline, enabling a detailed analysis of its behavior under ice gouging loads. The simulations analyze subgouge soil displacement, pipeline displacement, strains, and ovalization. The findings reveal a direct correlation between increasing trench wall angle and width and the intensification of the backfill removal mechanism. Trench geometry significantly influences the pipeline's horizontal and vertical displacement, while axial displacement and ovalization are less affected. This study emphasizes the crucial role of trenching technique selection and trench shape design in mitigating the risks of ice gouging, highlighting the value of numerical modeling in optimizing pipeline protection strategies in these challenging environments.

期刊论文 2025-09-01 DOI: 10.1016/j.coldregions.2025.104535 ISSN: 0165-232X

With the advantages of low construction costs and rapid installation, suction caissons are widely used as foundations in offshore engineering. This paper investigates the behavior of suction caisson foundations located in sandy soil under horizontal cyclic loads. The upgraded simple anisotropic sand constitutive model with memory surface (SANISAND-MS model) is employed to accurately capture the sand's cyclic behavior. To calibrate the parameters of the upgraded SANISAND-MS model, a series of triaxial drained monotonic and cyclic tests was performed. The effects of load idealization and loading sequence on the cyclic behavior of sand are studied based on the element test results, and the effects of load idealization on the cyclic response of suction caissons are studied from a finite-element simulation perspective. The triaxial test results indicate that load idealization slightly affects strain accumulation in both loose and dense sand. Based on simulation results, it is found that the loading sequence of load packages with varying amplitudes has a minor effect on the rotation accumulation of the suction caisson. The current load idealization method used in the engineering design practice of suction caissons is acceptable under drained conditions.

期刊论文 2025-08-01 DOI: 10.1061/JGGEFK.GTENG-13229 ISSN: 1090-0241

Screw piles are uniquely-shaped concrete piles with screw threads that have been widely used in various fields, including construction, structural design, and geotechnical engineering. Research on the dynamic characteristics of screw piles under vertical loads is limited compared with that investigating traditional circular piles. This report describes an analytical solution that has been developed to investigate the dynamic features of a screw pile under a longitudinal load while considering the cushion cap effect. The Laplace transform and Potential functions are applied to decouple the three-dimensional wave equations of the soil. The dynamic response of the screw pile is deduced using a modified impedance transfer function method. Finally, the cushion cap displacement and velocity in the frequency domain are determined by combining the initial conditions. The analytical solutions are compared with field-measured curves to validate the developed method. The results indicate that the soil around the pile can be regarded as a threedimensional continuous medium to simulate the radiation-damping effect as the wave propagates outward. The cushion cap reduces the screw pile damage caused by resonance, particularly in the low-frequency range. Considering the effects of vibrational loads, a screw pile should employ a large lightweight cushion cap, i.e., with the largest reasonable dimensions and with concrete materials that are as light as possible. The results of this study provide a theoretical basis for designing a dynamic foundation of a screw pile.

期刊论文 2025-08-01 DOI: 10.1016/j.jobe.2025.112755

The sulphated gravel embankment in seasonal frozen soil regions may experience deformation problems such as salt expansion, frost heave, and settlement under rainfall percolation conditions and changes in environmental temperature, affecting considerably its normal use. In response to these issues, relying on the renovation and expansion project of an international airport in northwest China, this paper used a self-designed temperature control testing device and conducted indoor constant temperature tests and freeze-thaw cycle tests using on-site natural embankment filling, and conducted numerical simulation tests using the COMSOL Multiphysics software programme. This paper investigated the characteristics of temperature variation, moisture, salt migration, and deformation of sulphated gravel in seasonal frozen soil regions under rainfall percolation conditions. The results indicated that under environmental temperature changes in the range of- 10-25 degrees C, the temperature at which sulphated gravel salt expansion and frost heave occur was approximately-8 degrees C, and the deformation sensitive depth range from 0 to 200 mm. The moisture and salt contents of soil samples would experience a sudden increase due to rainfall percolation, with the sudden increase in moisture in the soil sample with a salt content of 0.9 % lagging that of the soil sample with a salt content of 0.5 % by one freeze-thaw cycle. Rainfall percolation significantly enhanced the settlement deformation of sulphated gravel during freeze-thaw cycles. The primary causes of soil deformation include the upward migration of water vapour, the downward percolation of moisture, and rainfall. These factors contribute to the destruction of the soil structure and alter the contact modes between soil particles, resulting in soil loosening and settlement deformation.

期刊论文 2025-08-01 DOI: 10.1016/j.still.2025.106507 ISSN: 0167-1987

The flexible joints and segmental lining serve as effective seismic measures for tunnel in high-intensity seismic area. However, the tunnel axial deformation at flexible joints has not been fully incorporated into analytical models. This study presents a novel mechanical model for flexible joints that considers tension (compression)shear-rotation deformations, replacing the traditional shear-rotation springs model. An improved semi-analytical solution has been developed for the longitudinal response of a tunnel featuring a three-way flexible joint mechanical model subjected to fault movement. The nonlinear elastic-plastic foundation spring, the soil-lining tangential interaction, and the axial force of tunnel lining have been considered to improve the applicability and precision of proposed method. The proposed solution is compared with existing models, such as short beams connected by shear and rotation springs, by examining the predictions against numerical simulations. The results indicate that the predictions of the proposed model align much more closely with the outcomes of the numerical simulations than those of the existing models. For the working conditions selected in 4, neglecting the tension-compression deformation at flexible joints an 81.8% error in the peak axial force of the tunnel and a 20.2% error in the peak bending moment. The reason is that ignoring the axial deformation of these joints results in a larger calculated axial force on the lining, which subsequently leads to increased bending moment and shear force. Finally, a parameter sensitivity analysis is conducted to investigate the effect of various factors, including flexible joint stiffness, segmental lining length, and the length of the tunnel fortification zone.

期刊论文 2025-08-01 DOI: 10.1016/j.tust.2025.106590 ISSN: 0886-7798

With the increasing utilization of underground space, engineering muck has become a potential urban risk. This study employed a waste-to-waste strategy to promote its low-carbon recycling by using rice husk ash (RHA) as a stabilizer, with a focus on elucidating the stabilization mechanisms through multi-scale analysis. The results showed that RHA synergized with cement, enhancing unconfined compressive strength and water stability, while reducing the specific surface area and swelling potential of the engineering muck. The optimal RHA dosage was found to be between 4 % and 6 %, with cement content ranging from 3 % to 9 %. The multi-scale analysis demonstrated that the stabilization mechanisms of RHA-cement stabilized soil were governed by two main factors: structural enhancement and surface modification, both of which were driven by the promotion of novel hydration products through the incorporation of RHA. Specifically, the needle-like and columnar minerals effectively filled soil pores, forming a dense, robust skeletal structure that enhanced the mechanical properties of the stabilized soil. Meanwhile, the honeycomb-like C-S-H gel adhered to soil particle surfaces, repairing cracks and reinforcing interparticle bonding, thus improving the overall structural integrity. AFM analysis further revealed that the honeycomb-like C-S-H gel consisted of rod-like nanoparticles that were regularly arranged on the soil surface. This feature increased surface roughness, reduced fractal dimensions, and created a multi-scale structure of micro-papillae and nano-hairs with a lotus leaf effect, significantly enhancing the hydrophobic properties of the soil.

期刊论文 2025-07-11 DOI: 10.1016/j.conbuildmat.2025.141730 ISSN: 0950-0618

Cadmium (Cd) in soil and water streams is now recognized as a significant environmental issue that harms plants and animals. Plants damaged by Cd toxicity experience various effects, from germination to yield reduction. Plant- and animal-based goods are allowing more Cd to enter our food chain, which could harm human health. Therefore, this urgent global concern must be addressed by implementing appropriate remedial measures. Plantbased phytoremediation is one safe, economical, and environmentally acceptable way to remove hazardous metals from the environment. Hyperaccumulator plants possess specialized transport proteins, such as metal transporters located in membranes of roots, as well as they facilitate Cd uptake from soil. This review outlines the latest findings about these membrane transporters. Moreover, we also discuss how innovative modern tools such as microbiomes, omics, nanotechnology, and genome editing have revealed molecular regulators connected to Cd tolerance, which may be employed to develop Cd-tolerant future plants. We can develop effective solutions to enhance tolerance of plant to Cd toxicity by leveraging membrane transporters and modern biotechnological tools. Additionally, implementing strategies to increase tolerance of Cd and restrict its bioavailability in plants' edible parts is crucial for improving food safety. These combined efforts will lead to the cultivation of safer food crops and support sustainable agricultural practices in contaminated environments.

期刊论文 2025-07-01 DOI: 10.1016/j.plaphy.2025.109919 ISSN: 0981-9428

Polypropylene fiber and cement were used to modify iron tailings and applying it to roadbed engineering is an important way to promote the sustainable development of the mining industry. However, the existing studies are mostly concerned with the static mechanical properties, and lack the deformation characteristics of cyclic loading under different loading modes. The effects of fiber content, dynamic-static ratio (Rcr) and curing age on the deformation characteristics of fiber cement modified iron tailing (FCIT) under different cyclic loading modes were explored through dynamic triaxial tests. The research results show that: (1) Polypropylene fibers significantly reduced the cumulative strain of FCIT. Under intermittent loading, the cumulative strain decreased by 36 similar to 43 %, and under continuous loading, the cumulative strain decreased by 48 similar to 55 %. (2) The deformation behavior of FCIT under both intermittent and progressive loading was in a plastic steady state with cumulative strain <= 1 %. (3) The cumulative strain variation of FCIT with intermittent loading of 0.316 % was significantly lower than that with continuous loading of 0.417 %, and the resilience modulus was higher with intermittent loading. (4) The stress history effect of step-by-step loading can be eliminated by the translational superposition method, and the strain evolution law under continuous loading is predicted based on the progressive loading data, and the minimum error between the expected and actual results is 6.5 % when Rcr is 0.1.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04544 ISSN: 2214-5095
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共216条,22页