共检索到 4

Carbonaceous aerosols play a crucial role in air pollution and radiative forcing, though their light-absorbing and isotopic characteristics remain insufficiently understood. This study analyzes optical absorption and isotopic composition in PM10 and PM2.5 particles from primary emission sources, focusing on traffic-related and solid fuel categories. We analyzed key optical properties, including the Angstrom absorption exponent (AAE), the contributions of black carbon (BC) and brown carbon (BrC) to total light absorption and the mass absorption efficiencies (MAE) of carbonaceous aerosols. AAE values were lower for traffic emission sources (0.9 to 1.3) than solid fuel emission sources (1.5 to 3), with similar values for both particle sizes. BrC contributions were more prominent at shorter wavelengths and were notably higher in solid fuel emission sources (61% to 88%) than in traffic emission sources (8% to 40%) at 405 nm. MAE values of BC at 405 nm were 2 to 20 times higher than BrC across different emissions. Particle size significantly affect MAE(BC) with PM2.5 higher when compared to PM10. Emissions from diesel concentrate mixer and raw coal burning exhibited the highest MAE(BC) for PM2.5 and PM10, respectively. Conversely, Coke had the lowest MAE(BC) but the highest MAE(BrC) for both sizes. Traffic emissions showed more stable carbon isotope ratios (delta C-13) enrichment (-29 parts per thousand to -24 parts per thousand) than solid fuels (-31 parts per thousand to -20 parts per thousand). delta C-13 of solid fuel combustion, unlike traffic sources, is found to be independent of size variation. These findings underscore the importance of source and size-specific aerosol characterization for unregulated emission sources.

期刊论文 2025-10-01 DOI: 10.1016/j.envpol.2025.126558 ISSN: 0269-7491

This study reports on the measurements of ion and refractory black carbon (rBC) concentrations in a shallow (10.96 m) ice core sample which was drilled from the field site of the East Greenland Ice Core Project (EGRIP) in July, 2016. The results provide a recent record of rBC deposition in the East Greenland ice sheet from 1990 to 2016. The annual variability in oxygen (delta O-18) and hydrogen (delta D) isotopic compositions indicated that notably warm events occurred since 2008. Peaks in rBC occurred during summer seasons, which may be attributed to the burning of biomass in boreal summer. The rBC record and analysis of historical air trajectories using the HYSPLIT model indicated that anthropogenic BC emissions from Russia, North America and Europe contributed to the majority of rBC deposition in the Greenland region, and a reduction in anthropogenic BC consumption in these areas played a dominant role in the decrease in BC concentrations since 2000. This record also suggests that the emissions from the East Asian region (China) contributed very little to the recorded BC concentrations in East Greenland ice core. The model results indicated that radiative forcing due to BC had decreased significantly since 1990, and had remained below 0.02W m(-2) since 2000.

期刊论文 2020-12-01 DOI: 10.1016/j.accre.2020.11.009 ISSN: 1674-9278

Brown carbon (BrC), a carbonaceous aerosol which absorbs solar radiation over a broad range of wavelengths, is beginning to be seen as an important contributor to global warming. BrC absorbs both inorganic and organic pollutants, leading to serious effects on human health. We review the fundamental features of BrC, including its sources, chemical composition, optical properties and radiative forcing effects. We detail the importance of including photochemical processes related to BrC in the GEOS-Chem transport model for the estimation of aerosol radiative forcing. Calculation methods for BrC emission factors are examined, including the problems and limitations of current measurement methods. We provide some insight into existing publications and recommend areas for future research, such as further investigations into the reaction mechanisms of the aging of secondary BrC, calculations of the emission factors for BrC from different sources, the absorption of large and long-lived BrC molecules and the construction of an enhanced model for the simulation of radiative forcing. This review will improve our understanding of the climatic and environmental effects of BrC. (C) 2018 Elsevier B.V. All rights reserved.

期刊论文 2018-09-01 DOI: 10.1016/j.scitotenv.2018.04.083 ISSN: 0048-9697

We carried out an analysis of black carbon (BC) surface mass concentration, its radiative effects, and sources of origin in an urban atmosphere in east India, during winter season, through ground-based measurements and application of modelling tools. BC surface mass concentration exhibited diurnal variation with their higher values and a larger variability during evening to early morning hours than during daytime (1100-1600 h, Local Time, LT) hours. Daytime mean surface BC mass concentration and BC mass fraction in total aerosol (size range 0.23-20 mu m) and in submicronic aerosol (size range 0.23-1 mu m) during the study period, corresponding to the well-mixed atmospheric layer were 11 mu g m(-3), 3-10%, and 9-16% respectively. The mean BC optical depth (BC-ADD) and BC-AOD fraction at 0.5 mu m were estimated in an optical model as 0.11 and 13% respectively. Mean shortwave aerosol radiative forcing due to BC at top-of-atmosphere (TOA) during the study period was found to be +0.94 W m(-2), which is about 59% the global mean radiative forcing due to carbon-dioxide gases. Estimates from BC simulations in a general circulation model showed BC surface concentration and BC optical depth in east India are primarily attributed to emissions from biofuel and fossil fuel combustion. Most of BC surface concentration (95%) and BC optical depth (60%) are contributed by emissions arising from the Indo-Gangetic plain (IGP) but there is a significant influence to BC columnar loading through elevated transport channels attributed mainly to emissions from open biomass burning from distant regions outside IGP. (C) 2012 Elsevier Ltd. All rights reserved.

期刊论文 2013-01-01 DOI: 10.1016/j.chemosphere.2012.06.063 ISSN: 0045-6535
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页