共检索到 2

Terrestrial ecosystems, account for approximately 31% of the global land area and play a significant role in the biogeochemical cycling of toxic elements. Previous studies have explored the spatial patterns, effects, and drivers of toxic elements along urban gradients, agricultural lands, grasslands, and mining sites. However, the elevational patterns of toxic elements in montane ecosystems and the underlying drivers remain largely unknown. Atmospheric deposition is a crucial pathway through which toxic elements accumulate along terrestrial elevational gradients. The accumulation of toxic elements exhibited seasonal variability along elevational gradients, with higher deposition occurring in summer and winter. Approximately 46.77% of toxic elements (e.g. Hg) exhibited increasing trends with elevation, while 22.58% demonstrated decreasing patterns (Ba, Co). Furthermore, 8.06% displayed hump-shaped distributions (Ag), and 22.58% showed no distinct patterns (As and Zn). The accumulation of these elements is influenced by several key factors, including atmospheric deposition (26.56%), anthropogenic activities (14.11%), and precipitation (10.37%) primarily via wet deposition of atmospheric pollutants. The accumulation of toxic elements threatens terrestrial biodiversity by disrupting food chains, altering community structures, and causing individual mortality. These disruptions also pose risks to human health through contaminated food sources and food webs, potentially leading to health issues like cancer, organ damage, and reproductive challenges. This review offers key insights into the factors affecting the accumulation and distribution of toxic elements along elevation gradients. It also lays the groundwork for further study on how toxic elements impact ecosystem functions, which is crucial for protecting biodiversity under climate change.

期刊论文 2025-05-01 DOI: 10.1016/j.ecolind.2025.113446 ISSN: 1470-160X

Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes. Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a 2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce (Picea asperata Mast.), red birch (Betula albosinensis Burk.), and minjiang fir (Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant (k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type. During the winter, lost mass contributed 18.3-28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition. Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.

期刊论文 2016-06-01 DOI: 10.1007/s11676-015-0180-3 ISSN: 1007-662X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页