共检索到 100

Moderate nitrogen addition can enhance plant growth performance under salt stress. However, the regulatory effects of nitrogen addition on the growth of the leguminous halophyte medicinal plant, Sophora alopecuroides, under salt stress remain unclear. In this study, a two-factor pot experiment with different NaCl levels (1 g/kg, 2 g/kg, 4 g/kg) and NH4NO3 levels (0 mg/kg, 32 mg/kg, 64 mg/kg, 128 mg/kg) was set up to systematically study the response of S. alopecuroides plant phenotype, nodulation and nitrogen fixation characteristics, nitrogen (N), phosphorus (P), potassium (K) nutrient absorption and utilization efficiency, plant biomass and nutrient accumulation to nitrogen addition under salt stress. The results demonstrated that under mild (1 g/kg NaCl) and moderate (2 g/kg NaCl) salt stress, S. alopecuroides exhibited a relatively low nitrogen demand. Specifically, low (32 mg/kg N) and medium (64 mg/kg N) nitrogen levels significantly enhanced nodule nitrogenase activity and nitrogen fixation capacity. Furthermore, the uptake of essential nutrients, including N, P, and K, in the aboveground biomass was markedly increased, which in turn promoted the accumulation of major nutrients such as crude protein, crude fat, and alkaloids, as well as overall biomass production. However, under severe (4 g/kg NaCl) salt stress, S. alopecuroides exhibited a preference for low nitrogen levels (32 mg/kg N). Under S3 conditions, excessive nitrogen application (e.g., 64 mg/kg and 128 mg/kg N) exacerbated the damage caused by salt stress, leading to significant inhibition of nitrogen fixation and nutrient uptake. Consequently, this resulted in a substantial reduction in biomass. This study provides a theoretical basis for nitrogen nutrition management of S. alopecuroides under salt stress conditions and offers valuable insights for optimizing fertilization and nutrient management strategies in saline-alkali agricultural production.

期刊论文 2025-09-15 DOI: 10.1016/j.indcrop.2025.121279 ISSN: 0926-6690

Maximizing agricultural tractor energy efficiency is crucial for sustainable farming. Tractors are one of the most popular machines in use in agriculture, and much of their use is dedicated to drawbar operations. Under these conditions, only up to 70 % of engine power is transferred to the soil, and this may even drop to 50 % on soils with poor mechanical properties. Recently, tyres which meet very high flexion standards have hit the market and to date, no study has performed a thorough full-vehicle traction analysis of vehicles equipped with such standards. This paper investigated the influence of tyres on vehicle performance and efficiency. Moreover, a cost analysis of the new tyre technology was carried out to assess the duration of use necessary for farmers to recoup the financial investment this new tyre technology requires. The analysis comprised steady-state drawbar tests on two soil types using a tractor rated at 230 kW and equipped with wheel force transducers. Key performance indicators were calculated from the collected data. Results showed superior traction on softer soil, where the mean vehicle traction ratio was 6.4 % higher than on firmer soil, highlighting tyre set performance differences. However, traction efficiency was 17.5 % greater on firmer soil. Very high flexion tyres resulted in improved indicators in both soils and despite the greater cost of tyres using the new standard, farmers may obtain economic benefits even within a year if such tyres are mostly used in field operations and on soft soils.

期刊论文 2025-09-01 DOI: 10.1016/j.still.2025.106570 ISSN: 0167-1987

Soil salinization is a growing concern that degrades soil quality and inhibits agricultural productivity. Miscanthus species have received wide attention because of their high calorific potential, their value as an energy plant, and their ability to maintain high biomass accumulation. However, most studies focused on the biochemical and physiological responses to salt stress while neglecting the osmotic adjustment processes and the contribution of both organic and inorganic substances to these processes. This study evaluates the response mechanism of Miscanthus sinensis to salt stress (0-300 mM of NaCl) by evaluating the growth and photosynthetic parameters, photosynthetic response to light, and contribution of organic and inorganic substances to osmotic potential. The results revealed that M. sinensis adopted Na + compartmentalization and reallocation of biomass to the aboveground parts to mitigate the negative impact of salinity stress. Specifically, Na+ accumulated more in the root and leaf, with an increment magnitude of 75.4-173.9 and 56.7-217.1 times, respectively. This was supported by the changing trend of the stem/leaf ratio (25.1 %-55.9 %) compared to the root/shoot ratio (12.3 %-18.3 %). Also, salt-induced stress decreased the leaf's water content and water use efficiency as a result of low intracellular osmosis, and to mitigate osmotic damage, M. sinensis enhanced the accumulation of proline. These results offer theoretical and scientific insights into managing the cultivation and improving the yield of M. sinensis and other energy herbaceous plants in saline soils.

期刊论文 2025-08-01 DOI: 10.1016/j.biombioe.2025.107898 ISSN: 0961-9534

Compared to the limited performance of other high-efficiency urea products, humic acid urea (HAU) increased the grain yield of winter wheat as well as of summer maize. However, the effect of adding different amounts of humic acid (HA) on the fate of urea and comprehensive economic and environmental evaluations remains unclear. Four treatments (no urea (CK), common urea (U), HAU0.5, and HAU5) were compared in a 2-year winter wheat-summer maize rotation system. Compared to U, the grain yield of HAU treatments increased by 4.48-11.25 %, regardless of crop type, planting year, or HA addition level; this was partly attributable to the increased storage of soil available N, as confirmed by a simultaneous 15N tracing microplot experiment in the first winter wheat season. HAU inhibited the loss of reactive N (NH3 volatilization, N2O emission, and NO3--N leaching loss). The C footprint based on the yield and areas calculations for HAUs was 7.01-13.48 % and 3.53-5.54 % lower than that of U, respectively. Annual environmental damage costs and annual net ecosystem economic benefits were decreased and increased by 14.89 %- 19.11 % and 6.38 %-9.23 %, respectively. Few agronomic and environmental differences were found between HAU5 and HAU0.5, although the former locked more 15N nutrients in the topsoil. This combined experiment using 15N tracer and field lysimeters showed that more nutrients from HAU were absorbed by crops and converted into grains, reducing the environmental risk of greenhouse gas emissions due to the release of unused nutrients from common U into farmland.

期刊论文 2025-08-01 DOI: 10.1016/j.eti.2025.104316 ISSN: 2352-1864

Soil cadmium (Cd) contamination threatens plant growth and agricultural productivity. Hibiscus syriacus L., valued for its ornamental, edible, and medicinal properties, is widely cultivated in Cd-contaminated areas of southern China.This study aimed to evaluate the effectiveness of nano-zinc oxide (nZnO) in alleviating Cd toxicity in H. syriacus, examining plant phenotypes, physiological and biochemical responses, root ultrastructure, and the accumulation and distribution of Cd and Zn within the soil-H. syriacus system. Pot experiments included Cd treatment (100 mg/kg) and combined soil or foliar applications of nZnO (50 and 100 mg/L), with plants harvested after 45 days. Compared to Cd treatment alone, the combined application of nZnO significantly increased biomass in roots, stems, and leaves, improved photosynthetic performance, osmotic regulation, and antioxidant levels, and mitigated root cell damage; Cd concentrated mainly in roots, and nZnO reduced root Cd levels by 0.24 %-9.06 %. SEM-EDS observations revealed that Cd predominantly accumulated in the root epidermis and cortex, with Cd stress leading to increased levels and localized aggregation of Cd in the xylem. By contrast, nZnO treatment alleviated this disruption. Leaf application of 50 mg/L nZnO showed the best results. These findings highlight nZnO as a promising nano fertilizer for alleviating Cd stress in plants.

期刊论文 2025-07-05 DOI: 10.1016/j.jhazmat.2025.137920 ISSN: 0304-3894

Brown carbon (BrC) is the ubiquitous part of the atmospheric organic carbon. It absorbs solar lights and greatly impacts the Earth's radiative balance. This study examines the spectral characteristics of BrC and its radiative effect in the Dhaka South (DS) site and Dhaka North (DN) site from July 2023 to January 2024 with a high-volume particulate matter sampler on quartz filters. Spectral characteristics such as absorption coefficient (babe,), mass absorption efficiency (MAE), absorption angstrom exponent (AAE), and refractive index (Kabs-x) were determined by using a UV -visible spectrophotometer, and fluorescence emission spectra were analyzed in different pH by the fluorescent spectrophotometer. The concentrations of BrC and black carbon (BC) were determined by an aethalometer. The mean concentrations of BrC and BC in Dhaka city were 18.63 +/- 3.84 mu g 111-3 and 17.93 +/- 3.82 pg M-3, respectively. The AAE values lie in the range of 3.20-4.01 (DN) and 3.27-4.53 (DS), and the radiative forcing efficiency of BrC was obtained at 4.43 +/- 1.02 W g-1 in DN and 3.93 +/- 0.74 W g-1 in DS, indicating the presence of highly light-absorbing BrC in these locations. Average MAE and Kabs_k values were 1.55 +/- 0.45 m2g1 and 0.044 + 0.013, respectively, in DS, alternatively 1.84 +/- 0.59 m2g1 and 0.052 +/- 0.016 in DN. The fluorescence excitation-emission spectra confirmed the presence of a polyconjugate cyclic ring with multifunctional groups in the structure of BrC. Light absorption properties and fluorescence emission spectra were varied with the change of pH. As the pH increased (2-8), the AAE value decreased and MAEB,c_365 increased due to protonation or deprotonation. This study highlights that the BrC has a significant impact on the air quality as well as the Earth's radiative balance, emphasizing its strong light-absorbing properties and variability with environmental factors.

期刊论文 2025-06-15 DOI: 10.1016/j.atmosenv.2025.121185 ISSN: 1352-2310

This study evaluated the usability and effectiveness of robotic platforms working together with foresters in the wild on forest inventory tasks using LiDAR scanning. Emphasis was on the Universal Access principle, ensuring that robotic solutions are not only effective but also environmentally responsible and accessible for diverse users. Three robotic platforms were tested: Boston Dynamics Spot, AgileX Scout, and Bunker Mini. Spot's quadrupedal locomotion struggled in dense undergrowth, leading to frequent mobility failures and a System Usability Scale (SUS) score of 78 +/- 10. Its short, battery life and complex recovery processes further limited its suitability for forest operations without substantial modifications. In contrast, the wheeled AgileX Scout and tracked Bunker Mini demonstrated superior usability, each achieving a high SUS score of 88 +/- 5. However, environmental impact varied: Scout's wheeled design caused minimal disturbance, whereas Bunker Mini's tracks occasionally damaged young vegetation, highlighting the importance of gentle interaction with natural ecosystems in robotic forestry. All platforms enhanced worker safety, reduced physical effort, and improved LiDAR workflows by eliminating the need for human presence during scans. Additionally, the study engaged forest engineering students, equipping them with hands-on experience in emerging robotic technologies and fostering discussions on their responsible integration into forestry practices. This study lays a crucial foundation for the integration of Artificial Intelligence (AI) into forest robotics, enabling future advancements in autonomous perception, decision-making, and adaptive navigation. By systematically evaluating robotic platforms in real-world forest environments, this research provides valuable empirical data that will inform AI-driven enhancements, such as machine learning-based terrain adaptation, intelligent path planning, and autonomous fault recovery. Furthermore, the study holds high value for the international research community, serving as a benchmark for future developments in forestry robotics and AI applications. Moving forward, future research will build on these findings to explore adaptive remote operation, AI-powered terrain-aware navigation, and sustainable deployment strategies, ensuring that robotic solutions enhance both operational efficiency and ecological responsibility in forest management worldwide.

期刊论文 2025-06-13 DOI: 10.1007/s10209-025-01234-2 ISSN: 1615-5289

Using ecological materials such as raw earth represents an ancestral building practice that has been revisited for modern construction, thanks to its availability, low cost, environmental friendliness, and thermal properties, which offer optimal insulation and thermal comfort. This article explores the development of a new composite based on raw earth reinforced with 15% mussel shells, a by-product of the aquaculture industry, combined with two stabilizers: lime or cement (3%, 5% and 8%), in distinct formulations. This study aims to characterize the chemical and mineralogical composition of the soil and mussel shells and the thermal and mechanical properties of the composites. The results indicate that the gradual addition of lime to the soil-mussel shell mixture decreases dry density, which reduces dry mechanical strength due to increased porosity but enhances thermal properties. Conversely, incorporating cement into the soil-mussel shell mixture improves significantly mechanical properties while limiting the thermal performances.

期刊论文 2025-06-09 DOI: 10.1007/s41207-025-00826-x ISSN: 2365-6433

The negative impact of climate change is potentially damaging agroecosystem services that have constrained agricultural production and caused water scarcity in Central Asian countries, particularly in Uzbekistan. This study evaluates the efficiency of full (FDI) and deficit (DDI) drip irrigation regimes for amaranth (Amaranthus spp.) cultivation in the Tashkent region of Uzbekistan using the HYDRUS-1D simulation model. Field experiments were conducted over two growing seasons, accompanied by soil moisture monitoring, root zone analysis, and crop performance measurements while the accuracy of the obtained results was assessed against ground measured data. The results showed that compared to the FDI regime, amaranth under the DDI improved water productivity by 56.5% while exhibiting tolerance to water scarcity. The Pearson correlation analysis revealed a strong relationship between the simulated and observed SWC data for both irrigation regimes (R2 = 0.862 for FDI and R2 = 0.936 for DDI), indicating the model's predictive reliability. Although FDI produced higher yield (2004 kg/ha) over the two-year period, which was 25% (2 t ha-1) higher than the DDI regime (1,604 kg/ha). However, DDI demonstrated significantly greater water productivity (56.5% higher), attributed to reduced unproductive evaporation and the C4 nature of amaranth. Root system analysis revealed deeper penetration under DDI, suggesting adaptive responses to water stress. The findings of this study suggest that implementing precise irrigation technology in amaranth cultivation combined with the use of the HYDRUS-1D model in the context of inevitable climate change, can ensure the long-term sustainable management of water and land resources in arid regions.

期刊论文 2025-06-04 DOI: 10.3389/fsufs.2025.1612679

As a crucial solution to the challenge of limited urban underground space development, the assembled shaft offers extensive structure-soil contact surfaces and meantime holds significant potential for shallow geothermal energy exploitation. In this paper, we propose an assembled energy shaft, i.e. a novel geothermal development system, in which the heat exchanger could be easily installed in the shaft concrete with extensive soil-contact area and can have superior protection without extra pre-drilling. This paper establishes a heat transfer model for energy shafts in soft soil areas. By comparing the heat transfer efficiency and additional thermal stress of the energy tunnel in Beijing, the practical feasibility of constructing energy shafts in coastal cities is demonstrated. By proposing the characterization parameters of heat exchange capacity per unit lining surface area and heat exchange per unit length of pipe, it is revealed that thermal interference is minimized when the heat exchange pipe spacing of the energy shaft is 0.25-0.3 m. The heat exchange efficiency is increased when the fluid flow rate is 0.6 m/s similar to 0.9 m/s. According to the deformation characteristics of the lining, the maximum tensile and compressive stresses occur near the inlet of the heat exchange pipe. To minimize stress concentration, it is advisable to position the inlet of the heat exchange pipe at the center of the segment. The research findings confirm the substantial potential of assembled energy shafts in shallow geothermal development and provide valuable insights for the design of such shafts in coastal cities.

期刊论文 2025-05-23 DOI: 10.1186/s40517-025-00350-9 ISSN: 2195-9706
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 末页
  • 跳转
当前展示1-10条  共100条,10页