Ciprofloxacin (CIP) is an antibiotic used in both human and veterinary medicine. Because it is only partially metabolized, it has been found in sewage sludge, manure, and agricultural soils. Therefore, due to the high persistence and low mobility of CIP in soil, we aimed to evaluate its long-term effect on Enchytraeus crypticus. Three multigenerational and one transgenerational test were performed according to OECD 220 guidelines (2016) on sandy clay soil. The concentrations tested were 0.1, 1.0, 10.0, 100.0, 1000.0 and 5000.0 mg kg- 1 dry soil. For F1, statistical analysis showed differences between the control and all concentrations tested, but no differences among the concentrations. For F2, there was a difference between control and 10 mg Kg -1 and for 10.0 mg Kg -1 compared to 0.1, 1.0 and 5000.0 mg Kg -1. For F3, no statistical difference was observed between any of the concentrations. When comparing the generations among themselves, there were significant differences between F1 and F2 and F1 and F3 for all concentrations. For the transgenerational test, there was no statistical difference between the control and the concentrations tested, nor among the concentrations. We verified a negative effect of CIP on the reproduction of E. crypticus for the first generation, which could be related to oxidative stress, DNA damage and clay content. We also verified that the organisms could develop a tolerance to CIP and that the effects of high clay content could outweigh the effects of CIP in long-term exposure. Due to the high persistence and low mobility of CIP on soil, it may affect other organisms and promote antibiotic resistant genes (ARGs) regardless of E. crypticus tolerance. Therefore, we strongly recommend further studies focusing on long-term effects on different organisms, with a molecular approach, and in different soil types.
Mato Grosso is the largest consumer of pesticides in Brazil, and although their role in phytosanitary control is evident, environmental contamination is a concern due to their intensive use. Therefore, identifying the behavior of pesticides in the environment can assist in risk management, and the Environmental Risk Index (ERI) is an indirect way of knowing the potential of these compounds. This study was aimed at evaluating the ERI of the most sold insecticides in Mato Grosso used for the control of lepidopteran pests. The parameters evaluated were persistence in the soil, leaching, volatility, toxicological profile and recommended dose. Our findings reported on 24 insecticides, which totaled an annual amount of 23,046,348 kg of active ingredients, with acephate at the top of the ranking with 8,974,413 kg sold in 2020. This insecticide, despite being widely used, had the lowest ERI due to low persistence, leaching and volatility, and its critical factor was animal toxicity. Malathion, methoxyphenozide, chlorantraniliprole, flubendiamide, and beta-cyfluthrin had the highest ERI, with toxicological profile and persistence in the environment as critical factors. In general, all compounds exhibited medium to very high levels of toxicity, indicating the need to manage risks associated with insecticide use and select those with lower impact, to minimize damage to agroecosystems.
The global spread of Fall Armyworm (FAW, Spodoptera frugiperda) has posed significant challenges to crop productivity and food security, with current pest management relying heavily on synthetic pesticides. This study explores the green synthesis of neem extract and neem oil-based Azadirachtin nanopesticides using cellulose acetate (CA) as a carrier polymer, focusing on their efficacy against FAW. The objective was to assess whether CA-NEP (neem extract nanopesticides) and CA-NOL (neem oil nanopesticide) formulations were effective at FAW control with minimal ecological impact. The nanopesticides were synthesized by electrospinning at concentrations of 5 %, 10 %, 20 %, 33 %, and 50 % (w/w) and characterized using Scanning Electron Microscopy and Fourier Transform Infrared spectroscopy. Azadirachtin content was quantified using Liquid Chromatography-Mass Spectroscopy. CA-NEP and CA-NOL followed first-order, and Korsmeyer-Peppas release kinetics, respectively. Feeding bioassays showed high FAW mortality rates, with 20 %-50 % CA-NEP achieving greater than 40 % mortality in less than 3 days and 50 % CA-NEP reaching 100 % mortality by day five. The mortality rates of FAW due to feeding on CA-NOL-treated corn leaves reached 40 % after 4 and 6 days, respectively, for 50 % and 33 % CA-NOL. Placing nanopesticide fibers next to corn seeds during planting significantly reduced FAW leaf damage. The lethal dose 50 (LD50) analyses showed that 13 % CA-NEP is the optimal concentration for FAW control. Environmental safety assessments on earthworms showed no acute or chronic toxicity, indicating that the nanopesticides suit ecologically sensitive areas. Therefore, these nanopesticide formulations provide a promising, eco-friendly alternative for sustainable FAW control and management with enhanced efficacy and safety.
Mangroves are essential ecosystems for coastal protection, carbon sequestration, biodiversity, and food production. In particular, mud crabs, with an annual global landing of over 100,000 metric tons, are crucial for the economic livelihoods and food security of millions of small-scale fishers in Southeast Asia. Here, we review the impact of pollutants on mud crab populations in mangrove ecosystems, with emphasis on pollutant sources, toxic effects on crabs, and remediation using microbes and biochar. Pollutants include microplastics, per- and polyfluoroalkyl substances, pesticides, polycyclic aromatic hydrocarbons, and heavy metals. Pollution originates from agricultural runoff, industrial discharges, mining activities, urbanization, and domestic waste. We present the use of biochar for pollutant remediation and enhancing carbon sequestration. We observe that heavy metals, pesticides, and microplastics induce oxidative stress, disrupt antioxidant defense mechanisms, and impair the growth, reproduction, and survival rates of mud crabs. Microbial bioremediation can remove more than 90% of polycyclic aromatic hydrocarbons. Biochar application reduces by 87% the bioavailability of heavy metal in contaminated soils.
For food safety challenges, sustainable aquaculture emerges as a significant source in recent years; however, despite its potential, the industry still facing challenges, notably the exposure of cultured animals to pesticidal pollution. This pollution originating from agricultural practices that can enter aquaculture system directly: to integrated-agriculture aquaculture practices, or indirectly via soil leakage. Current research based on glyphosate (GLY) toxicity and its amelioration by lycopene (LYC). Four fish groups used for six-weeks experiment in which four groups were used. Control group (CL) was fed with basal commercial diet only without any LYC and GLY exposure; 2) LYC group: exposed to LYC supplemented diet (15 mg/kg per fish diet); 3) GLY group: exposed to glyphosate only (1/5th of 96 h LC50: 0.0892 mg/L) with basal commercial diet, and; 4) GLY + LYC group: exposed to both lycopene supplemented diet (15 mg/kg per fish diet) and glyphosate (1/5th of 96 h LC50: 0.0892 mg/L). GLY observed to decrease growth parameters and feed utilization whereas, lycopene ameliorated growth rate (WG, SGR, HSI, CF) and feeding utilization (FCR) as compared to the control group. Also, GLY induced toxicity within hematobiochemical parameters with alleviation by LYC supplementation. GLY induced cytotoxicity was observed within RBCs as lobbing, notching, vacuolation, blebbing, micronuclei, and condensation. Increase in reactive oxygen species (ROS) and thiobarbituric acid reactive substances (TBARS) were observed by GLY exposure. Also, there is observed reduction in antioxidant enzyme activities (CAT, SOD, POD, TPC and GSH) upon GLY exposure. Lipid peroxidation (malondialdehyde: MDA), 8-OHdG (8-hydroxy-2 '-deoxyguanosine) and DIY (dityrosine) observed to increase by GLY toxicity. There was improvement in immune responses; increased AChE (acetylcholinesterase) activity, lysozyme content, ACP (acid phosphatase), NBT (nitro blue tetrazolium), NO (nitric oxide) and IgM levels (immunoglobulin M) and digestive enzyme activities (protease, lipase and amylase) observed by LYC supplemented diet. Taken together, LYC supplementation observed to alleviate GLY induced oxidative stress and cytotoxicity with improved immunity, digestive actions and blood health within C. carpio. Therefore, dietary supplementation with lycopene can protect common carp from the harmful effects by glyphosate within agri-integrated aquaculture practices, so suggesting it as potential feed additive.
Allelopathy is an underlying and controversial mechanism for detrimental environmental effects in the management of Eucalyptus plantations. However, little attention has been paid to the dynamics of allelochemicals and phytotoxicity in soil fauna during litter decomposition. To explore the relationship between the dynamics of phytotoxicity and allelochemicals, a decomposition experiment was conducted using 4-year-old and 8-year-old Eucalyptus grandis litter (0, 10, 20, 30, and 45 days). The acute toxicity of Eisenia fetida was assessed, and a chemical analysis of the eucalyptus leaves was performed. Biochemical markers, including total protein, acetylcholinesterase (AChE) activity, and oxidative stress levels (SOD and MDA) were measured. A comet assay was used to determine DNA damage in E. fetida cells. The results showed that after 20-30 days of decomposition, E. grandis litter exhibited stronger phytotoxic effects on E. fetida in terms of growth and biochemical levels. After 20 days of decomposition, the weight and total protein content of E. fetida first decreased and then increased over time. SOD activity increased after 20 days but decreased after 30 days of decomposition before increasing again. MDA content increased after 20 days, then decreased or was stable. AChE activity was inhibited after 30 days of decomposition and then increased or stabilized with further decomposition. Soluble allelochemicals, such as betaine, chlorogenic acid, and isoquercitrin, significantly decreased or disappeared during the initial decomposition stage, but pipecolic acid significantly increased, along with newly emerging phenolic fractions that were present. More allelochemicals were released from 8-year-old litter than from 4-year-old E. grandis litter, resulting in consistently more severe phytotoxic responses and DNA damage in E. fetida. Scientific management measures, such as the appropriate removal of leaf litter in the early stages of decomposition, might help support greater biodiversity in E. grandis plantations.
With an increase in the generation of sewage sludge, there comes a demand for disposal methods for it, and agricultural use is a sustainable alternative. However, there are gaps regarding emerging pollutants, especially in the pharmaceutical class. Nimesulide - an anti-inflammatory pharmaceutical recently associated with liver damage and banned in some European countries - is among the most consumed pharmaceuticals in Brazil hence can be found in wastewater and, therefore, in sewage sludge used for agriculture at ng L-1 concentrations. The objective of this research was to evaluate the toxicity of the anti-inflammatory pharmaceutical nimesulide through toxicity tests using the organism Enchytraeus crypticus in both natural and artificial soils, adopting concentrations about studies carried out with other anti-inflammatory drugs on seeds in the soil. In this work, the toxicity of nimesulide was evaluated in natural tropical soil sampled in Sao Paulo - Brazil, and in tropical artificial soil. The invertebrate E. crypticus was exposed to nimesulide nominal concentrations of 200; 340; 578; 982 and 1670 mg nimesulide kg-1 of dry soil and the reproduction test was performed according to ISO 16.387 (2014) standard, with 5 replicates per concentration. The results obtained through reproduction testing with E. crypticus in each concentration presented were EC50 values of 699 and 759 mg nimesulide Kg-1 dry soil, respectively for both natural and artificial soil. The Tukey test showed no significant difference between the soils, however. Finally, this study suggests that the anti-inflammatory drug nimesulide displays a toxicological effect on the reproduction of soil fauna organisms in high concentrations. Therefore, stresses the importance of identifying and monitoring unknown concentrations of this emerging pollutant in the environment.
Atrazine (ATZ) is the third most sold herbicide in Brazil, occupying the seventh position between most widely used pesticides. Due to its easy outflow, low reactivity and solubility, moderate adsorption to organic matter and clay, and long soil persistence, residual herbicide can be identified after long periods following application, and its usage has been prohibited in diverse countries. Amphibians are important bioindicators to assess impact of pesticide like atrazine, due to having a partial aquatic life cycle. This study had as objective to assess the response of bullfrog (Lithobates catesbeianus) tadpoles when exposed to this herbicide. Animals were exposed for a total of 168h to following concentrations: negative control, 40 mu g/L, 200 mu g/L, 2000 mu g/L, 20000 mu g/L of ATZ. Analysis of swimming activity was performed, and biochemical profile was assessed by analysis of blood and plasma glucose levels, urea, creatinine, cholesterol, HDL, triglycerides, glutamic pyruvic transaminase (GPT), alkaline phosphatase (AP), calcium, total proteins, phenol, peroxidase and polyphenol oxidase activity. Results exhibited malnutrition, anemia, likely muscle mass loss, and hepatic damage, indicating that ATZ can lead to an increase in energy to maintain homeostasis for animal survival.
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) is commonly used in rubber compounds as antioxidants to protect against degradation from heat, oxygen, and ozone exposure. This practice extends the lifespan of rubber products, including tires, by preventing cracking, aging, and deterioration. However, the environmental consequences of waste generated during rubber product use, particularly the formation of 6PPD-quinone (6PPD-Q) through the reaction of 6PPD with ozone, have raised significant concerns due to their detrimental effects on ecosystems. Extensive research has revealed the widespread occurrence of 6PPD and its derivate 6PPDQ in various environmental compartments, including air, water, and soil. The emerging substance of 6PPD-Q has been shown to pose acute mortality and long-term hazards to aquatic and terrestrial organisms at concentrations below environmentally relevant levels. Studies have demonstrated toxic effects of 6PPD-Q on a range of organisms, including zebrafish, nematodes, and mammals. These effects include neurobehavioral changes, reproductive dysfunction, and digestive damage through various exposure pathways. Mechanistic insights suggest that mitochondrial stress, DNA adduct formation, and disruption of lipid metabolism contribute to the toxicity induced by 6PPD-Q. Recent findings of 6PPD-Q in human samples, such as blood, urine, and cerebrospinal fluid, underscore the importance of further research on the public health and toxicological implications of these compounds. The distribution, fate, biological effects, and underlying mechanisms of 6PPD-Q in the environment highlight the urgent need for additional research to understand and address the environmental and health impacts of these compounds.
Alternative farming systems have developed since the beginning of industrial agriculture. Organic, biodynamic, conservation farming, agroecology and permaculture, all share a grounding in ecological concepts and a belief that farmers should work with nature rather than damage it. As ecology-based agricultures rely greatly on soil organisms to perform the functions necessary for agricultural production, it is thus important to evaluate the performance of these systems through the lens of soil organisms, especially soil microbes. They provide numerous services to plants, including growth promotion, nutrient supply, tolerance to environmental stresses and protection against pathogens. An overwhelming majority of studies confirm that ecology-based agricultures are beneficial for soil microorganisms. However, three practices were identified as posing potential ecotoxicological risks: the recycling of organic waste products, plastic mulching, and pest and disease management with biopesticides. The first two because they can be a source of contaminants; the third because of potential impacts on non-target microorganisms. Consequently, developing strategies to allow a safe recycling of the increasingly growing organic matter stocks produced in cities and factories, and the assessment of the ecotoxicological impact of biopesticides on non-target soil microorganisms, represent two challenges that ecology-based agricultural systems will have to face in the future. Impact of ecology-based farming practices on soil microbial ecotoxicology.