Intensifying human activities have triggered significant ecological degradation, necessitating innovative approaches to ecosystem restoration. This study introduces a novel integrated methodology combining Ecological Security Patterns (ESP) and Ecological Risk Assessment (ERA) to identify priority ecological restoration areas in the Hefei Metropolitan Area. By synthesizing these complementary approaches, we overcome the limitations of individual methods and establish a comprehensive framework for prioritizing ecological restoration. We construct a complex ecological network comprising 36 source areas spanning 8313.96 km2 and 92 interconnected ecological corridors extending 24,489.17 km. We have identified 73 ecological restoration nodes and 19 key restoration areas covering 544.45 km2, predominantly located at critical ecological junctions. The study categorizes restoration zones into five distinct types: river and lake wetland restoration, mine environment remediation, urban ecological landscape reconstruction, ecological corridor connectivity restoration, and soil and water conservation improvement. Combining ESP with ERA allows for the identification of regions most vulnerable to ecological damage while preserving key ecological functions and networks. Through the identification of urban ecological conflict zones, this study provides a strategic framework for enhancing ecosystem resilience and promoting sustainable urban development. This research is significant because of its potential to address the urgent need for effective ecological restoration strategies in rapidly urbanizing regions, offering a systematic approach to balance ecological preservation with urban development.
The idea of green mining has attracted much attention over the past decade. Accurate identification of key elements of ecological restoration in mining areas is an important prerequisite for ecosystem restoration and reconstruction and improving the quality of ecological environment. The goal of this study is to develop a five-factor index system for ecological restoration in mining areas, with the Huojitu well serving as a case study of a typical western shallow-buried high-intensity mining area in China. The factors include vegetation cove, soil, ecological landscape, land damage and site condition. An obstacle factor diagnosis model based on the coupling of obstacle degree and Shefold restriction law has been established in this research. This model is used to identify the obstacle factors and analyze the key elements of ecological restoration in the mining area. The key elements of ecological restoration are identified by combining the obstacle degree of each obstacle factor. According to the findings, out of all the areas included in the study, the one pertaining to soil conditions was the biggest at 35.29 km2, or 31.91% of the total, followed by land damage condition (21.25 km2 similar to 19.20%), site condition (19.74 km2 similar to 17.84%), vegetation cover (3.34 km2, similar to 3.02%), and ecological landscape (31.08 km2 similar to 28.03%). Based on the identification results of critical elements in mining area ecological restoration, this study proposes targeted remediation strategies and formulates corresponding site-specific rehabilitation measures to facilitate efficient ecosystem recovery in mining regions. This approach not only advances the practical implementation of ecological restoration technologies but also provides a valuable reference framework for sustainable ecosystem management in post-mining landscapes.
Urgent action is needed in the Amazon to halt deforestation, repair agricultural damage, and restore forests to revive ecosystemic functions such as carbon (C) storage and soil health. A critical and demanding challenge, especially in sandy soils, is ceasing the slash-and-burn in smallholder farming livelihoods to preserve ecosystem services of primary and secondary forests. Here, we examined (i) the recovery of secondary forests in structure, litter layer, and soil health, as well as C storage post-agricultural abandonment of extremely sandy Amazonian soils (> 89 % sand), and (ii) the extent of loss of these gains when a secondary forest is burned for agricultural reconversion. We tracked secondary forests at 2, 5, 10, and 20 years, including slash-and-burning the 20-year-old forest. Our methods included analyzing C stocks in soil, litter, and plants, forest vegetation ecological indexes, litter quality assessed through nitrogen (N), C, and lignocellulose contents, delta C-13 to indicate organic matter origin, and seven additional soil health indicators. Soil delta C-13 ranged from-27.1 to-28.8 parts per thousand across the sites, indicating a negligible influence of tropical grasses on the soil's organic matter and suggesting that pastures were not previously cultivated in these areas. Secondary forest growth accumulated 0.24 and 2.97 Mg C ha(- 1 )y(- 1 ) in litter and trees, respectively. Yet, soil C stocks did not show significant changes during 20 years of forest regeneration. Over 18 years, the forest increased the vegetation diversity fourfold and litter N by 41 %, improving forest structure and litter quality. This progress in organic matter aboveground contributed to improved soil biological activity and nutrient storage, facilitating soil health and multifunctionality regeneration as the forest aged. However, slash-and-burn resulted in a 67.6 Mg C ha(- 1 ) loss, reverting levels below those of the 2-year-old forest. Returning to agriculture also depleted soil cation exchange capacity, bulk density, and fauna activity, degrading soil's chemical, physical, and biological functions to levels comparable to or worse than those in the youngest forest. We conclude that Amazonian lands abandoned after long-term agriculture still offer potential for ecological restoration, with secondary forests capable of regenerating multiple ecosystem functions, even in sandy soils. However, a single slash-and-burn reverses 20 years of progress and degrades soil health further. Recognizing smallholder farmers' poverty and reliance on slash-and-burn, we advocate for educational and socioeconomic support to stop fires and encourage sustainable agriculture, including bioeconomy incentives and environmental compensation to sustain the perpetuation and benefits of secondary forests in the Amazon.
Ecosystem engineers are a critical driver of material cycling and energy flow in degraded or damaged ecosystems, and they are considered to be keystone species for ecological restoration. Despite their importance, there are relatively few studies that quantify the roles of ecosystem engineers during ecological restoration. In this study, the influence of excavation by Chinese pangolin (Manis pentadactyla) on biological processes during the restoration in burned forest sites in subtropical China were assessed. Results showed that plant species preferentially colonized burrow habitats and animal species intensively utilized burrow resources, benefiting the restoration of biodiversity in burned forest habitats. One year following forest fire, the network complexity and stability of plants and animals in burned habitats with burrows were significantly higher than those without burrows. The significantly positive associations between animals, especially birds, and multiple plant species suggested that the burrow utilization by animals accelerate the ecological processes of plant seed dispersal from fire-free to burrow habitats, and from burrow habitats to burned habitats without burrows. These findings imply that pangolin burrows serve as hubs for multi-species coexistence and accelerate the biodiversity restoration of burned forests. Excavation by ecosystem engineers, represented here by Chinese pangolins, exhibits important implications for ecological restoration of fire-burned forest ecosystems.
To remedy ecological damage and soil contamination in mining brownfields, this research focuses on the Gumi Mountain mining area in Wuhan. It proposes restoration strategies based on Nature-based Solutions (NbSs). Besides terrain restoration and soil enhancement, it also involves the redesigning of water systems, hydrological management, and the stratified planting of native species to restore plant communities. As China's inaugural quartz optical fiber was born here, we need to consider its history when making reclamation strategy for the Optics Valley City. This research took the Pulsed High Magnetic Field Facility (PHMFF) as the prototype to build a model that integrates mountain, river, forest, farmland and flower ecosystems. Based on NbS, we divided the brownfield by functions and redesigned the tourist routes. This research offers new methodologies for similar efforts in mine rehabilitation.
Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking. This study examines (i) how overgrazing impacts multiple soil indicators, functions, and overall soil health (SH) and (ii) whether natural early forest growth post-grazing exclusion enhances critical soil functions for ecosystem restoration. We compared preserved dense forests, longterm overgrazed pastures (over 30 years), and young fenced-off open forests (three years old) along a longitudinal transect in the Caatinga biome: 36 degrees W (Sao Bento do Una), 37 degrees W (Sertania), and 40 degrees W (Araripina). Soil samples from the 0-20 cm layer were analyzed for thirteen physical, chemical, and biological indicators for a structured SH assessment, calculating index scores based on soil functions. Forest-to-pasture transition and subsequent overgrazing consistently compacted the soils and decreased nitrogen, carbon (C), microbial biomass C, and glomalin protein, thus degrading the soil's physical, chemical, and biological functions. Regionally, this conversion depleted 14.7 Mg C ha(-1) and reduced overall SH scores by 18%, severely impacting biological functions ( e.g.,-43% for sustaining biological activity). No significant differences in functions or SH were found between grazed pastures and open forests. SH scores and C stocks were highly interrelated (r > 0.5; p < 0.001), suggesting that C losses and SH deterioration were closely aligned. We conclude that overgrazing degrades soil multifunctionality and health across the Caatinga biome, with biological functions most severely damaged and legacies obstructing soil recovery for up to three years of grazing exclusion. Future SH studies should include open forest chronosequences with older ages and active restoration practices ( e.g., planting trees or green manure) to enhance Caatinga's ecological restoration knowledge and efforts.
Reducing carbon emissions and increasing carbon sinks have become the core issues of the international community. Although coastal blue carbon ecosystems (such as mangroves, seagrass beds, coastal salt marshes and large algae) account for less than 0.5% of the seafloor area, they contain more than 50% of marine carbon reserves, occupying an important position in the global carbon cycle. However, with the rapid development of the economy and the continuous expansion of human activities, coastal wetlands have suffered serious damage, and their carbon sequestration capacity has been greatly limited. Ecological restoration has emerged as a key measure to reverse this trend. Through a series of measures, including restoring the hydrological conditions of damaged wetlands, cultivating suitable plant species, effectively managing invasive species and rebuilding habitats, ecological restoration is committed to restoring the ecological functions of wetlands and increasing their ecological service value. Therefore, this paper first reviews the research status and influencing factors of coastal wetland carbon sinks, discusses the objectives, types and measures of various coastal wetland ecological restoration projects, analyzes the impact of these ecological restoration projects on wetland carbon sink function, and proposes suggestions for incorporating carbon sink enhancement into wetland ecological restoration.
Targets for ecosystem restoration have been made at global, regional, and national scales, but monitoring of progress remains challenging. Differences in definitions, goals, and practices among restoration initiatives, linked to policy drivers and funding sources, add complexity. We evaluate the current state of ecological restoration activity in Colombia, where, since 2012, legal requirements to compensate for environmental damage may be driving widespread restoration efforts, alongside a long history of government and private restoration initiatives. We systematically searched several public databases, and circulated an online survey, to collect records of 675 terrestrial and coastal restoration projects initiated between 1963 and 2021, capturing data on: location, funding, monitoring, ecosystem type and actors. Location was reported for 613 projects at municipality level, and 261 projects at point level. Restoration aims included recovery of ecological processes, hydrological processes, soil erosion, and natural resources. Only 24 % reported any monitoring, with just 2 % monitoring effectiveness. Forty-one percent of projects were enacted under environmental compensation laws. Funding was mostly from within Colombia, with minimal international funding. This work highlights major gaps in the monitoring needed to achieve effective implementation of restoration targets. Enhancing coordination among institutions, and enhancing monitoring, will now be crucial to achieving restoration goals.
Open-pit coal mining poses a severe threat to regional ecological security. Rapid and accurate monitoring of ecological quality changes is crucial for regional ecological restoration. In this study, taking the Wujiata open-pit coal mine as an example, the Red-Edge Normalized Difference Vegetation Index (RENDVI), Salinity Index (SI-T), WETness index (WET), Normalized Differential Built Soil Index (NDBSI), Land Surface Temperature (LST), and Desertification Index (DI) were used to construct the Open-pit Mine Remote Sensing Ecological Index (OM-RSEI) through Principal Component Analysis (PCA). The ecological quality and restoration conditions of typical mining areas in arid and semi-arid regions were monitored and evaluated. The results shown that: (1) The contribution rates and eigenvalues of OM-RSEI were higher than those of conventional RSEI, OM-RSEI was more applicable in open-pit mining areas. (2) From 2018 to 2023, the OM-RSEI of the Wujiata open-pit coal mine showed a 'V' shaped fluctuation that was damaged and then gradually recovered. (3) The degraded area of Wujiata open-pit coal mine and its 5 km buffer zone accounted for 78.02%, and the improved area accounted for 19.16%. (4) The average Moran's I index of OM-RSEI in the study area was 0.8189, and the high-high clustering corresponded to the 'good' and 'excellent' distributions, while the low-low clustering corresponded to the 'poor' and 'less-poor' distributions. The OM-RSEI provided a new indicator for monitoring and evaluation of ecological restoration in open-pit coal mines, which can provide theoretical support for ecological restoration in open-pit coal mining areas.
For six decades the African Journal of Range & Forage Science and its precursors have contributed to understanding drivers of rangeland degradation and development of approaches for restoration of damage by grazing, mining and other forms of land use. Of the 857 articles selected by the keyword search, only around 150 focused on reversing loss of natural capital, including soil, water and biodiversity and or resilience, and were cited in this review. Restoration approaches ranged from grazing management such as resting, rotational grazing and grazing intensification, to interventions such as burning, browsing and clearing of encroaching woody or non-native plants, resource capture, reseeding and replanting. Global change brings novel challenges for restoration research. Major knowledge gaps include assessment of restoration progress, development of policy and incentives to promote and fund restoration, and identification of unintended risks posed by restoration interventions.