Liquefaction, a significant hazard triggered by earthquakes, is characterized by a sudden loss of shear strength due to a rise in pore pressure and the corresponding reduction in effective stresses, leading to structural damage and substantial economic losses. Numerous studies have investigated various mitigation measures for liquefaction. Recently, the focus has shifted toward developing environmentally friendly, cost-effective technologies to enhance liquefaction resistance. One such promising technique is induced partial saturation (IPS), which has the potential to serve as a cost-effective, environmentally friendly, and practical solution for both new and existing structures. The IPS mechanism was examined and discussed extensively in the first part of this review. The effectiveness and usability of this approach in the soil are reviewed in the next section, using small, large-scale laboratory and field-scale testing. Following that, microbubble and pore-scale studies are used to quantify durability and stability. The review has provided several key recommendations to address the current challenges and limitations of the technique, aiming to enhance its effectiveness and stability. Given the ongoing research and the need to ascertain their suitability for practical applications, the existence of a comprehensive literature review becomes essential. This review will provide researchers with valuable insights into the current state of knowledge in this field and serve as a foundation for future studies.
Strong ground shaking has the potential to generate significant dynamic strains in shallow materials such as soils and sediments, thereby inducing nonlinear site response resulting in changes in near-surface materials. The nonlinear behaviour of these materials can be characterized by an increase in wave attenuation and a decrease in the resonant frequency of the soil; these effects are attributed to increased material damping and decreased seismic wave propagation velocity, respectively. This study investigates the 'in-situ' seismic velocity changes and the predominant ground motion frequency evolution during the 2016 Kumamoto earthquake sequence. This sequence includes two foreshocks (M-w 6 and M-w 6.2) followed by a mainshock (M-w 7.2) that occurred 24 hr after the last foreshock. We present the results of the seismic velocity evolution during these earthquakes for seismological records collected by the KiK-net (32 stations) and K-NET (88 stations) networks between 2002 and 2020. We analyse the impulse response and autocorrelation functions to investigate the nonlinear response in near-surface materials. By comparing the results of the impulse response and autocorrelation functions, we observe that a nonlinear response occurs in near-surface materials. We then quantify the velocity reductions that occur before, during, and after the mainshock using both approaches. This allows us to estimate the 'in-situ' shear modulus reduction for different site classes based on V-S30 values (V-S30760 m s(-1)). We also establish the relationships between velocity changes, shear modulus reduction, variations in predominant ground motion frequencies and site characteristics (V-S30). The results of this analysis can be applied to site-specific ground motion modelling, site response analysis and the incorporation of nonlinear site terms into ground motion models.
The Pohang Basin sustained the most extensive seismic damage in the history of instrumental recording in Korea due to the 2017 Mw 5.5 earthquake. The pattern of damage shows marked differences from a radial distribution, suggesting important contributions by local site effects. Our understanding of these site effects and their role in generating seismic damage within the study area remains incomplete, which indicates the need for a thorough exploration of subsurface information, including the thickness of soil to bedrock and basin geometry, in the Pohang Basin. We measured the depth to bedrock in the Pohang Basin using dense ambient noise measurements conducted at 698 sites. We propose a model of basin geometry based on depths and dominant frequencies derived from the horizontal-to-vertical spectral ratio (HVSR) of microtremor at 698 sites. Most microseismic measurements exhibit one or more clear HVSR peak(s), implying one or more strong impedance contrast(s), which are presumed to represent the interface between the basement and overlying basin-fill sediments at each measurement site. The ambient seismic noise induces resonance at frequencies as low as 0.32 Hz. The relationship between resonance frequency and bedrock depth was derived using data from 27 boreholes to convert the dominant frequencies measured at stations adjacent to the boreholes into corresponding depths to the strong impedance contrast. The relationship was then applied to the dominant frequencies to estimate the depth to bedrock over the whole study area. Maps of resonance frequency and the corresponding depth to bedrock for the study area show that the greatest depths to bedrock are in the coastal area. The maps also reveal lower fundamental frequencies in the area west of the Gokgang Fault. The results indicate a more complex basin structure than previously proposed based on a limited number of direct borehole observations and surface geology. The maps and associated profiles across different parts of the study area show pronounced changes in bedrock depth near inferred blind faults proposed in previous studies, suggesting that maps of bedrock depth based on the HVSR method can be used to infer previously unknown features, including concealed or blind faults that are not observed at the surface.