On December 18, 2023, a destructive M S . 6.2 earthquake occurred in Jishishan County, Gansu Province, China. The earthquake triggered a loess earthflow in Zhongchuan Township, resulting in 13 fatalities. The catastrophic earthflow moved about 3 km without previous rainfall and its mobility index (H/L) is as low as 0.026. We combined multi-source data, including remote sensing images, drone images, and field investigation data, to analyze the mechanism of this disaster. It is found that highly saturated loess liquefied under intense seismic vibration, eventually forming an earthflow and moving rapidly along the northern gully. Moreover, a depth- integrated continuum model that comprehensively considers soil and water lateral pressure is adopted to reveal the above-mentioned mechanism. A MUSCL-HLLC finite volume method with well wet-dry boundary treatment is proposed to solve the full dynamic process of the earthflow. The simulated results reproduce the movement process of this disaster and are in good agreement with the measured data. Compared with other models, the coupling model of soil pressure and water pressure with the partitioned pore water pressure ratio can improve the simulation accuracy. This comprehensive analysis offers valuable insights and guidance for the risk management and prevention of such disasters.
With the aggravation of climate warming, unstable soil slopes are more and more common in permafrost regions. The long-term monitoring of a slow earthflow (K178 + 530 landslide) in the Xiao Xing'an Mountains permafrost area in Northeast China was carried out. The deformation characteristics and occurrence mechanism of the landslide were studied using field investigation, on-site drilling, sensor monitoring, laboratory test, Google satellite image, unmanned aerial vehicle photogrammetry, and high-density resistivity. To analyze the variation laws of pore water pressure and effective stress and their influence on slope deformation, a coupled hydro-thermo-mechanical model was established to reconstruct the deformation process of the slope. The results show that the groundwater recharge from the permafrost degradation and surface infiltration reduces the soil cohesion and internal friction angle near the main scarp and increases the soil gravity, thus providing dynamic and mechanical conditions for slope deformation. The melting of the continuous segregation ice in the active layer and surface infiltration reduces the soil strength of the sliding surface and provides deformation conditions for the start of the landslide. The combination of these two factors finally led to the occurrence of the landslide. According to its deformation mechanism, it can be judged that the landslide is a thrust-type landslide. In addition, after the melting of the segregation ice, the upper soil slides along the slope under the action of gravity, causing the sliding surface to be parallel to the slope surface. The soil near the main scarp slides downward and accumulates near the toe to form several transverse ridges. The instability of the transverse ridges produces secondary sliding which causes the toe to advance continuously. The numerical simulation results can intuitively reflect the stage deformation characteristics of the slope, pore water pressure changes, and effective stress distributions, which provides a supplement for further understanding the formation mechanism and deformation process of the landslide.
Under the influence of climate change, permafrost landforms are sensitive to seasonal heave and contraction, thus exacerbating surface instability and fostering landslides as a consequence. In the pastureland of Zhimei on the Qinghai-Tibet Plateau (QTP), a typical earthflow has drawn significant attention through social media. However, detailed knowledge of the deformation characteristics, internal hydrothermal regime, and structure is still scarce. In this study, we aim to enhance traditional satellite synthetic aperture radar interferometry to divide ground deformation into the seasonal oscillation and slope deformation components and identify the magnitude and spatial distribution of unstable slopes in frozen regions. Then, the use of unmanned aerial vehicles (UAVs) was combined with geophysical monitoring techniques to recognise the deformation dynamics from the pre- to post-failure stages. Sentinel-1 images, covering almost five years, highlighted that obvious creep behaviour dominated at the pre-failure stage, while a seasonal deformation pattern characterised by a piecewise distribution associated with the hydrothermal regime was observed at the post-failure stage. Fast retrogressive erosion on the head scarps at the post-failure stage was clearly identified by multidifferential digital surface models from the UAV observations. To better understand the internal structure, both electrical resistivity tomography and ground-penetrating radar were combined to determine the seasonal frozen thickness, underlying thawing materials, and vertical cracks, which controlled the kinematic evolution from the initial creep to the narrow and long oversaturated flow that represented the terminal portion of the landslide. Finally, by comparing in situ monitoring data with field investigations, the main driving factors controlling the movement mechanism are discussed. Our results highlight the specific kinematic behaviour of an earthflow and can provide a reference for slope destabilisation on the QTP under the influence of climate change.