共检索到 4653

Climate change is reshaping the risk landscape for natural gas pipelines, with landslides emerging as a major driver of technological accidents triggered by natural hazards (Natech events). Conventional Natech risk models rarely incorporate climate-sensitive parameters such as groundwater levels and soil moisture, limiting their capacity to capture evolving threats. This study develops a probabilistic model that explicitly links climate-driven landslide susceptibility to pipeline vulnerability, providing a quantitative basis for assessing pipeline failure probability under different emission projection scenarios. Using Monte Carlo simulations across five regions in China, the results show that under high-emission pathways (SSP5-8.5), pipeline failure probability in summer increases dramatically. For example, from 0.320 to 0.943 in Xinjiang, 0.112 to 0.220 in Sichuan, and 0.087 to 0.188 in Hainan. In cold regions, winter failure probability more than doubles, rising from 0.206 to 0.501 in Heilongjiang and from 0.235 to 0.488 in Beijing. These shifts reveal an overall increase in risk, intensification of seasonal contrasts, and, in some areas, a reconfiguration of high-risk periods. Sensitivity analysis highlights groundwater levels and soil moisture as the dominant drivers, with regional differences shaped by precipitation regimes, permafrost thaw, and typhoon impacts. Building on these insights, this study proposes an AI-based condition-monitoring framework that integrates real-time climate and geotechnical data to support adaptive early warning and safety management.

期刊论文 2026-04-01 DOI: 10.1016/j.jlp.2025.105849 ISSN: 0950-4230

Large-scale wildfires are essential sources of black carbon (BC) and brown carbon (BrC), affecting aerosol-induced radiative forcing. This study investigated the impact of two wildfire plumes (Plume 1 and 2) transported to Moscow on the optical properties of BC and BrC during August 2022. During the wildfires, the total light absorption at 370 nm (b(abs_370nm)) increased 2.3-3.4 times relative to background (17.30 +/- 13.98 Mm(-)(1)), and the BrC contribution to total absorption increased from 14 % to 42-48 %. BrC was further partitioned into primary (BrCPri) and secondary (BrCSec) components. Biomass burning accounted for similar to 83-90 % of BrCPri during the wildfires. The b(abs_370nm) of BrCPri increased 5.6 times in Plume 1 and 11.5 times in Plume 2, due to the higher prevalence of peat combustion in Plume 2. b(abs_370nm) of BrCSec increased 8.3-9.6 times, driven by aqueous-phase processing, as evidenced by strong correlations between aerosol liquid water content and b(abs_370nm) of BrCSec. Daytime b(abs_370nm) of BrCSec increased 7.6 times in Plume 1 but only 3.6 times in Plume 2, due to more extensive photobleaching, as indicated by negative correlations with oxidant concentrations and longer transport times. The radiative forcing of BrCPri relative to BC increased 1.8 times in Plume 1 and Plume 2. In contrast, this increase for BrCSec was 3.4 times in Plume 1 but only 2.3 times in Plume 2, due to differences in chemical processes, which may result in higher uncertainty in its radiative forcing. Future work should prioritize elucidating both the emissions and atmospheric processes to better quantify wildfire-derived BrC and its radiative forcing.

期刊论文 2026-03-01 DOI: 10.1016/j.horiz.2025.100169

Soil organic matter (SOM) stability in Arctic soils is a key factor influencing carbon sequestration and greenhouse gas emissions, particularly in the context of climate change. Despite numerous studies on carbon stocks in the Arctic, a significant knowledge gap remains regarding the mechanisms of SOM stabilization and their impact on the quantity and quality of SOM across different tundra vegetation types. The main aim of this study was to determine SOM characteristics in surface horizons of permafrost-affected soils covered with different tundra vegetation types (pioneer tundra, arctic meadow, moss tundra, and heath tundra) in the central part of Spitsbergen (Svalbard). Physical fractionation was used to separate SOM into POM (particulate organic matter) and MAOM (mineral-associated organic matter) fractions, while particle-size fractionation was applied to evaluate SOM distribution and composition in sand, silt, and clay fractions. The results indicate that in topsoils under heath tundra POM fractions dominate the carbon and nitrogen pools, whereas in pioneer tundra topsoils, the majority of the carbon and nitrogen are stored in MAOM fractions. Moreover, a substantial proportion of SOM is occluded within macro-and microaggregates. Furthermore, the results obtained from FTIR analysis revealed substantial differences in the chemical properties of individual soil fractions, both concerning the degree of occlusion in aggregates and across particle size fractions. This study provides clear evidence that tundra vegetation types significantly influence both the spatial distribution and chemical composition of SOM in the topsoils of central Spitsbergen.

期刊论文 2026-03-01 DOI: 10.1016/j.catena.2025.109772 ISSN: 0341-8162

Assessing long-term changes in Aerosol Optical Depth (AOD) together with Aerosol Radiative Forcing Efficiency (ARFE, defined as radiative forcing per unit visible AOD) provides critical insight into the evolving role of different aerosol species in regional climate forcing. In this study, we analyse two decades of AOD trends (2001-2020) across eight climatically diverse regions using a multivariate regression framework, and quantify species-specific radiative effects with the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The regions were chosen to represent contrasting trends in total AOD. Our results show that sulfate aerosols, which account for the largest share of AOD over India (similar to 36-45 %), are the primary driver of increasing AOD and associated atmospheric warming. Black carbon (BC), although contributing only a minor fraction to total AOD (2-10 %), emerges as the dominant warming agent across most regions, with particularly strong forcing signals over the Middle East. In contrast, sea-salt (SS) aerosols exert the largest cooling influence, most prominently over the Southern African (SAF) region, partially offsetting warming from absorbing species. Europe, despite an overall decline in AOD, exhibits a slight increase in SS that sustains a regional cooling effect. These findings demonstrate that species composition, vertical distribution, and optical properties govern ARFE more strongly than the total AOD magnitude alone. By linking AOD trends with species-resolved radiative forcing efficiency across multiple regions, this study advances the interpretability of ARFE as a climate indicator and highlights its potential to inform policy-relevant assessment of aerosol-driven warming and cooling.

期刊论文 2026-02-15 DOI: 10.1016/j.atmosenv.2025.121693 ISSN: 1352-2310

Understanding long-term interactions between climate, permafrost, and vegetation provides an essential context for interpreting current Arctic greening. Using 65 fossil pollen records from northern Siberia and a Random Forest model trained on a dataset of 835 modern pollen-climate assemblages, we quantitatively reconstructed mean temperature of the warmest month (Mtwa: mean July temperature) anomalies over the past 40 thousand years (ka) and assessed associated vegetation changes. During the Last Glacial Period, herbaceous taxa overwhelmingly dominated, and warming of similar to 1 degrees C during similar to 40-35 cal ka BP was insufficient to deepen the active layer beyond the threshold required for tree establishment, leaving woody cover minimal. In the early Holocene, sustained warming of nearly 2 degrees C triggered permafrost degradation and active-layer thickening, enabling forest expansion, although tree taxa lagged shrubs by several millennia. These results reveal a clear threshold effect in vegetation-permafrost interactions and show that only sustained warming can overcome permafrost constraints. By providing quantitative temperature estimates, our reconstruction offers critical benchmarks for predicting how ongoing Arctic warming may transform vegetation patterns and permafrost stability.

期刊论文 2026-02-01 DOI: 10.1016/j.gloplacha.2025.105237 ISSN: 0921-8181

Carbonaceous aerosols (CA) strongly impact regional and global climate through their light-absorbing and scattering properties, yet their effects remain uncertain in dust-influenced regions. We investigated the optical properties, source contributions, and radiative impacts of CA at two climatically distinct regions in northwestern India: an arid region (AR, Jodhpur; post-monsoon) and a semi-arid region (SAR, Kota; winter). Mean absorption & Aring;ngstr & ouml;m exponent (AAE) values were comparable between the two regions (AR: 1.416 +/- 0.173; SAR: 1.395 +/- 0.069), but temporal cluster analysis revealed source-specific variability, with lower AAE during traffic-dominated periods (similar to 1.30) and elevated AAE during solid fuel and biomass combustion (1.68 in AR and 1.52 in SAR). While equivalent BC (eBC) levels were higher in AR with a relatively uniform liquid-fuel contribution (BClf = 80.06 +/- 1.98 %), the mass absorption cross- of BC (MAC(BC)) in SAR was similar to 4.5X greater, driven by local solid fuel combustion and transported biomass burning emissions (BCsf = 34.61 +/- 6.88 %). Mie modelling indicated higher SSA in AR due to higher contribution of mineral dust, in contrast to SAR, where carbonaceous aerosols caused stronger absorption, forward scattering, and higher imaginary refractive index (k(OBD)). Although absorption enhancement (E-lambda) was slightly higher in AR (similar to 1.11 vs. similar to 0.99), SAR aerosols nearly doubled the warming potential (Delta RFE), with RFE values of similar to 0.87 W/m(2) in SAR versus similar to 0.43 W/m(2) in AR. These findings highlight strong source-specific and site-specific variability in aerosol absorption and radiative, emphasizing the need to integrate region-specific parameters into climate models and air quality assessments for data-scarce arid and semi-arid South Asian environments.

期刊论文 2026-01-25 DOI: 10.1016/j.atmosenv.2025.121694 ISSN: 1352-2310

Slope failures resulting from thaw slumps in permafrost regions, have developed widely under the influence of climate change and engineering activities. The shear strength at the interface between the active layer and permafrost (IBALP) at maximum thawing depth is a critical factor to evaluate stability of permafrost slopes. Traditional direct shear, triaxial shear, and large-scale in-situ shear experiments are unsuitable for measuring the shear strength parameter of the IBALP. Based on the characteristics of thaw slumps in permafrost regions, this study proposes a novel test method of self-weight direct shear instrument (SWDSI), and its principle, structure, measurement system and test steps are described in detail. The shear strength of the IBALP under maximum thaw depth conditions is measured using this method. The results show that under the condition that the permafrost layer is thick underground ice and the active layer consists of silty clay with 20% water content, the test results are in good agreement with the results of field large-scale direct shear tests and are in accordance with previous understandings and natural laws. The above analysis indicates that the method of the SWDSI has a reliable theoretical basis and reasonable experimental procedures, and meets the needs of stability assessment of thaw slumps in permafrost regions. The experimental data obtained provide important parameter support for the evaluation of related geological hazards.

期刊论文 2026-01-15 DOI: 10.1016/j.measurement.2025.118845 ISSN: 0263-2241

Against the backdrop of global warming, the increasing spatiotemporal variability in precipitation patterns has intensified the frequency and risk of dry-wet abrupt alternation (DWAA) events in semi-arid regions. This study investigates the Hailar River Basin in northern China (1980-2019) and develops the Soil Moisture Concentration Index (SMCI) using daily soil moisture (SM) data simulated by the VIC hydrological model. A high-resolution temporal framework is introduced to detect DWAA events and evaluate the impact of precipitation pattern variations on dry-wet transitions in the basin. The results indicate: (1) Annual precipitation in the basin has significantly increased (0.47 mm y(-1) in the south, P < 0.05), while precipitation intensity follows a gradient pattern, increasing in the upstream (3.65 mm d1 y1) and decreasing in the downstream (-2.34 mm y(-1)). Additionally, the number of dry days and short-duration, high-intensity precipitation events has risen; (2) Soil moisture (SM) data simulated by the VIC model effectively capture DWAA events, showing significantly higher | SMCI| values downstream than upstream (P < 0.05) and indicating more intense dry-wet transitions in the downstream region. Furthermore, 78 % of the area exhibits an increasing trend in |SMCI|(1980-2019), with dry-to-wet transition events occurring more frequently than wet-to-dry events. For instance, in 2013, the maximum coverage area reached 48 % in a single day; (3) The random forest model highlights the spatial heterogeneity of DWAA driving factors: upstream water yield is the dominant factor, whereas downstream variations are closely associated with precipitation intensity (R-2 = 0.76) and the frequency of heavy rainfall days. Permafrost degradation and land use changes further heighten hydrological sensitivity in the downstream region. This study offers a transferable methodological framework for understanding extreme hydrological events and reveals that the driving mechanisms of DWAA are spatially heterogeneous, shifting from being dominated by terrestrial factors in the headwaters to meteorological factors downstream-a finding with significant implications for water resource management in other large, heterogeneous semi-arid basins.

期刊论文 2026-01-01 DOI: 10.1016/j.jconhyd.2025.104763 ISSN: 0169-7722

Biomass burning is a major source of carbonaceous aerosols that significantly influences the Earth's radiation balance. However, the spectral light absorption properties of biomass burning aerosols (BBAs), particularly the contribution of brown carbon (BrC), remain poorly constrained due to reliance on laboratory measurements that may not accurately represent real-world atmospheric conditions. To address this limitation, we developed an unmanned aerial vehicle (UAV) based-platform for direct in-situ measurements of BBAs in the ambient atmosphere over the rural North China Plain. This approach reduces biases inherent to laboratory chamber experiments and enables a more realistic characterization of BBAs absorption properties. Our measurements revealed that the absorption & Aring;ngstr & ouml;m exponent (AAE) for typical residential biomass burning was 3.70 +/- 0.04 under smoldering conditions and 1.50 +/- 0.08 under flaming conditions. Variations in AAE were driven primarily by combustion conditions and smoke humidity rather than fuel type. Additionally, field-observed OC/EC ratios were up to ten times higher than those reported in laboratory chamber studies, resulting in systematically lower mass absorption cross-sections. This finding suggests that the BBAs light absorption and radiative forcing estimates in the North China Plain may be systematically overestimated by chamber-based studies. Notably, under smoldering conditions, BrC absorption at 375 nm was up to 6.6 times greater than that of black carbon (BC) once mass emissions are considered, emphasizing that strategies aiming at reducing smoldering combustion could be particularly effective in mitigating the ultraviolet radiative effects of BBAs. Our results demonstrate that ambient atmospheric measurements are essential for accurately constraining BBAs absorption properties and their climate impacts.

期刊论文 2026-01-01 DOI: 10.1007/s11430-025-1781-0 ISSN: 1674-7313

Conventional materials necessitate a layer-by-layer rolling or tamping process for subgrade backfill projects, which hampers their utility in confined spaces and environments where compaction is challenging. To address this issue, a self-compacting poured solidified mucky soil was prepared. To assess the suitability of this innovative material for subgrade, a suite of performance including flowability, bleeding rate, setting time, unconfined compressive strength (UCS), and deformation modulus were employed as evaluation criteria. The workability and mechanical properties of poured solidified mucky soil were compared. The durability and solidification mechanism were investigated. The results demonstrate that the 28-day UCS of poured solidified mucky soil with 20% curing agent content reaches 2.54 MPa. The increase of organic matter content is not conducive to the solidification process. When the curing temperature is 20 degrees C, the 28-day UCS of the poured solidified mucky soil with curing agent content not less than 12% is greater than 0.8 MPa. The three-dimensional network structure formed with calcium silicate hydrate, calcium aluminate hydrate, and ettringite is the main source of strength formation. The recommended mud moisture content is not exceed 85%, the curing agent content is 16%, and the curing temperature should not be lower than 20 degrees C.

期刊论文 2025-12-31 DOI: 10.1080/10298436.2025.2508345 ISSN: 1029-8436
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共4653条,466页