在列表中检索

共检索到 1

This study investigated the dynamic properties of red mud (RM)-reinforced volcanic ash (VA) by dynamic triaxial tests. The effects of stress state (dynamic stress sigma d, confining stress sigma 3), dynamic frequency (f) and load waveform (F) on the accumulative plastic strain (epsilon p) have been investigated. The findings indicate a significant influence of the stress state on epsilon p. When sigma d reaches 120 kPa, the specimens exhibit insufficient strength, leading to shear failure. As sigma 3 increases, the dynamic stresses that lead to specimen destabilization also exhibit an upward trend. The effect of f on epsilon p is limited. The epsilon p does not exhibit a clear or consistent developing pattern with increasing f. As for the F, the epsilon p exhibited by the specimens subjected to sinusoidal wave loads is less than that observed under trapezoidal wave loads. Shakedown theory classifies deformation responses into plastic shakedown, plastic creep and incremental collapse. The epsilon p curve patterns of RM-reinforced VA exhibit plastic shakedown and incremental collapse without significant plastic creep characteristics under cyclic loading. A predictive model for epsilon p under cyclic loading is established, which has good predictability. This study presents a novel application of VA and RM, offering substantial research insights into waste recycling.

期刊论文 2025-06-17 DOI: 10.1007/s11440-025-02649-0 ISSN: 1861-1125
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页