共检索到 1

This paper proposes a carbon fiber reinforced polymer (CFRP) retrofitting scheme for improving the seismic performance of atrium-style metro stations (AMS). Past experimental studies have confirmed that the weakest of the AMS during strong earthquakes is located at the upper-story beam ends. However, there is thus far no candidate for a reference approach to retrofitting and strengthening the AMS. This study addresses this gap by applying CFRP retrofitting to both ends of the upper-story beam. The main objective is to assess the effectiveness of the proposed retrofitting scheme. First, a three-dimensional finite element model is developed to simulate dynamic soil-AMS interaction. The validity of the numerical method is assessed via a comparison with measured data from reduced-scale model tests. Second, a numerical model of the AMS retrofitted with CFRP is built using validated methods. Finally, dynamic time-history analyses of the AMS with and without CFRP retrofitting are conducted, and their dynamic responses, including inter-story drift, dynamic strain, and tensile damage, in conjunction with the lateral displacement of the surrounding ground, are compared. Comparison of the results for the non-retrofitted and retrofitted structures shows that CFRP retrofitting significantly reduces both the principal strains and tensile damage factors at the upper-story beam ends while slightly increasing those values at the mid-span of the beam; additionally, it does not change the structural lateral deformation. Therefore, it can be concluded that CFRP retrofitting could effectively improve the seismic performance of the AMS without changing its lateral stiffness.

期刊论文 2025-10-01 DOI: 10.1016/j.soildyn.2025.109535 ISSN: 0267-7261
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页