共检索到 5

Slip zone soil, a crucial factor in landslide stability, is essential for understanding the initiation mechanisms and stability assessment of reservoir bank landslides. This study investigates the strength characteristics of slop zone soil under drying-wetting (D-W) cycles to inform research on reservoir bank landslides. As an illustration of this phenomenon, the Shilongmen landslide in the Three Gorges Reservoir serves as a case study. Taking into account the impact of both D-W cycles and the overlying load on the soil. the strength characteristics of the slip zone soil are investigated. Experimental results show that slip zone soil exhibits strain softening during D-W cycles, becoming more pronounced with more cycles. D-W cycles cause deterioration in shear strength and cohesion of slip zone soil, especially in the first four cycles, while the internal friction angle remains largely unchanged. The compaction effect of the overlying load mitigates the deterioration caused by D-W cycles. The findings reveal the weakening pattern of mechanical strength in slip zone soil under combined effects of overlying load and D-W cycles, offering valuable insights for studying mechanical properties of slip zone soil in reservoir bank landslides.

期刊论文 2025-05-01 DOI: 10.16285/j.rsm.2024.0885 ISSN: 1000-7598

Water level fluctuations in the reservoir deteriorate soils and rocks on the bank landslides by dryingwetting (D-W) cycles, which results in a significant decrease in mechanical properties. A comprehensive understanding of deterioration mechanism of sliding-zone soils is of great significance for interpreting the deformation behavior of landslides. However, quantitative investigation on the deterioration characteristics of soils considering the structural evolution under D-W cycles is still limited. Here, we carry out a series of laboratory tests to characterize the multi-scale deterioration of sliding-zone soils and reveal the mechanism of shear strength decay under D-W cycles. Firstly, we describe the micropores into five grades by scanning electron microscope and observe a critical change in porosity after the first three cycles. We categorize the mesoscale cracks into five classes using digital photography and observe a stepwise increase in crack area ratio. Secondly, we propose a shear strength decay model based on fractal theory which is verified by the results of consolidated undrained triaxial tests. Cohesion and friction angle of sliding-zone soils are found to show different decay patterns resulting from the staged evolution of structure. Then, structural deterioration processes including cementation destruction, pores expansion, aggregations decomposition, and clusters assembly are considered to occur to decay the shear strength differently. Finally, a three-stage deterioration mechanism associated with four structural deterioration processes is revealed, which helps to better interpret the intrinsic mechanism of shear strength decay. These findings provide the theoretical basis for the further accurate evaluation of reservoir landslides stability under water level fluctuations. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).

期刊论文 2025-04-01 DOI: 10.1016/j.jrmge.2024.05.031 ISSN: 1674-7755

Predisintegrated carbonaceous mudstone (PCM) that exhibits low strength and continuous disintegration is prone to wetting deformation after repeated seasonal rainfall. A reasonable assessment of wetting deformation is required to facilitate the settlement control of the PCM embankment when exposed to repeated rainfall. Herein, to reveal the wetting deformation mechanism of the PCM subjected to drying-wetting cycles, the effects of drying-wetting cycles on the wetting deformation characteristics of the PCM are investigated using the double-line method. Microscopic pore characteristics of the PCM under different drying-wetting cycles were analyzed through scanning electron microscope (SEM) micrographs. Comparative analysis of the wetting deformation data between the tests and the constitutive model considering the damage of drying-wetting cycles was carried out. The results showed that the deviator stress-strain relationship curves of the PCM exhibit the strain hardening without obvious peak and no strain softening phenomena. The critical wetting strain of the PCM was positively correlated with the number of drying-wetting cycles, while the critical deviator stress decreased with an increase in the number of drying-wetting cycles. As the number of cycles increased, the gelling material between the particles dissolved, the volume of pores inside the PCM increased, and the number of pores inside the PCM decreased. The porosity of PCM had a significant quadratic function with the number of drying-wetting cycles. A wetting deformation damage model was developed to calculate the wetting deformation of the PCM by considering the effects of drying-wetting cycles, which can be useful for evaluating rainfall-induced settlements of relevant engineering structures made from PCM.

期刊论文 2025-02-01 DOI: 10.1061/IJGNAI.GMENG-9745 ISSN: 1532-3641

In cold and saline soil areas, concretes usually experience multi-factor erosions, such as freezing- thawing cycles (FTCs), drying-wetting cycles (D-Ws), and salt erosion. To promote green and sustainable development of the construction industry, municipal solid waste incinerator bottom ash (MSWIBA) was adopted as a partial replacement for conventional fine aggregates in concretes. In this study, the coupled effects of the D-Ws and salt erosion (i.e., 5 % NaCl solution and 5 % Na2SO4 2 SO 4 solution) were experimentally conducted to investigate the mechanical and micro- structural properties of ordinary and MSWIBA concretes. The results showed that D-Ws had a negative effect on the mechanical properties of concretes. The depth and width of cracks in concretes increased with the D-Ws raised. During the D-Ws, the influence of salt solution on concretes could be divided into two stages. Initially, the filling effect of salt crystals was beneficial to the development of concrete strength. Subsequently, salt crystals accumulated in concretes caused cracks, and accelerated the deterioration of concrete specimens. Meanwhile, sodium sulphate reacted with hydration products in concretes to produce some expansive substances, the evident diffraction peaks of expansive substances (e.g., gypsum and ettringite) had been clearly observed after D-Ws. Thus, the damage effect of 5 % Na2SO4 2 SO 4 solution (SS) to concrete structure was more serious than that of water (WT) and 5 % NaCl solution (CS). Furthermore, the total porosity of the concrete specimens generally decreased with the MSWIBA substitution rate increased. There was an optimal MSWIBA content for concretes to obtain the excellent mechanical and microstructural properties. In detail, when the substitution rate of MSWIBA was between 0 % and 33.0 %, it had an excellent effect on improving the pore structure of concretes. Specifically, the compressive strength of concretes was larger than 35.0 MPa when the substitution rate of MSWIBA with natural river sand was between 24.8 % and 57.8 %, whereas the substitution rate of MSWIBA should not exceed 33.0 % exposed to D-Ws. This study could provide a significant reference for the sustainable development of concretes in cold and saline soil areas, as well optimization and innovation usage of MSWIBA.

期刊论文 2024-11-01 DOI: 10.1016/j.jobe.2024.110482

The creep behavior of an expansive clay under undrained conditions is investigated considering the effects of freeze-thaw-drying-wetting (FTDW) cycles. Compacted specimens were subjected to 1, 4, and 10 FTDW treatments. Macroscopic changes were recorded and mercury intrusion porosimetry tests were conducted to reveal the expansive clay's structure evolution during the FTDW treatments. The undrained shear strength was first determined by the consolidated undrained shear tests for as-compacted specimens. Subsequently, saturated undrained creep tests under low confining pressure were performed at various deviator stress levels (D) to study the axial strain development with time for specimens subjected to different FTDW cycles (NFTDW). Experimental results show that 1) the macropores increase with the newly emerged peak at a diameter between 10 mu m to 20 mu m and micropores decrease after FTDW cycles; 2) the axial instantaneous strain (epsilon ai), creep strain (epsilon ac), and total strain (epsilon at) increase with FTDW cycles. The epsilon ai-D-NFTDW and epsilon at-D-NFTDW relationships of the specimens are distributed on a unique surface under a certain confining pressure level; 3) the axial strain rate decreases dramatically within the first 2,000 min and then remains nearly constant. Studies in this paper are valuable for advancing the understanding of the influences of environmental factors on the creep behavior of expansive clays.

期刊论文 2024-07-01 DOI: 10.1007/s12205-024-0533-6 ISSN: 1226-7988
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页