共检索到 2

Accurately determining the freeze/thaw state (FT) is crucial for understanding land-atmosphere interactions, with significant implications for climate change, ecological systems, agriculture, and water resource management. This article introduces a novel approach to assess FT dynamics by comparing the new diurnal amplitude variations (DAV) algorithm with the traditional seasonal threshold algorithm (STA) based on the soil moisture active passive (SMAP) brightness temperature data. Utilizing soil temperature profiles from 44 sites recorded by the National Ecological Observatory Network between July 2019 and June 2022. The results reveal that the DAV algorithm demonstrates a remarkable potential for capturing FT signals, achieving an average accuracy of 0.82 (0.89 for the SMAP-FT product) across all sites and a median accuracy of 0.94 (0.92 for the SMAP-FT product) referring to soil temperature at 0.02 m. Notably, the DAV algorithm outperforms the SMAP-adopted STA in 25 out of 44 sites. The accuracy of the DAV algorithm is affected by daily temperature fluctuations and geographical latitudes, while the STA exhibits limitations in certain regions, particularly those with complex terrains or variable climatic patterns. This article's innovative contribution lies in systematically comparing the performance of the DAV and STA algorithms, providing valuable insights into their respective strengths and weaknesses.

期刊论文 2025-01-01 DOI: 10.1109/JSTARS.2025.3546014 ISSN: 1939-1404

The freezing front depth (z(ff)) of annual freeze-thaw cycles is critical for monitoring the dynamics of the cryosphere under climate change because z(ff) is a sensitive indicator of the heat balance over the atmosphere-cryosphere interface. Meanwhile, although it is very promising for acquiring global soil moisture distribution, the L-band microwave remote sensing products over seasonally frozen grounds and permafrost is much less than in wet soil. This study develops an algorithm, i.e., the brightness temperature inferred freezing front (BT-FF) model, for retrieving the interannual z(ff) with the diurnal amplitude variation of L-band brightness temperature (?T-B) during the freezing period. The new algorithm assumes first, the daily-scale solar radiation heating/cooling effect causes the daily surface thawing depth (z(tf)) variation, which leads further to ?T-B; second, ?T-B can be captured by an L-band radiometer; third, z(tf) and z(ff) are negatively linear correlated and their relation can be quantified using the Stefan equation. In this study, the modeled soil temperature profiles from the land surface model (STEMMUS-FT, i.e., simultaneous transfer of energy, mass, and momentum in unsaturated soil with freeze and thaw) and T-B observations from a tower-based L-band radiometer (ELBARA-III) at Maqu are used to validate the BT-FF model. It shows that, first, ?T-B can be precisely estimated from z(tf) during the daytime; second, the decreasing of z(tf) is linearly related to the increase of z(ff) with the Stefan equation; third, the accuracy of retrieved z(ff) is about 5-25 cm; fourth, the proposed model is applicable during the freezing period. The study is expected to extend the application of L-band T-B data in cryosphere/meteorology and construct global freezing depth dataset in the future.

期刊论文 2023-01-01 DOI: 10.1109/JSTARS.2023.3241876 ISSN: 1939-1404
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页