Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely. However, the majority of such wellbore breakout analyses were based on continuum mechanics. In addition to failure in intact rocks, wellbore breakouts can also be initiated along natural discontinuities, e.g. weak planes and fractures. Furthermore, the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation. This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin, China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method (DEM) and the discrete fracture network (DFN). The developed model was validated against caliper log measurement, and its stability study was carried out by stress and displacement analyses. A parametric study was performed to investigate the effects of the characteristics of fracture distribution (orientation and length) on borehole stability by sensitivity studies. Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability. Moreover, an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress (i.e. the direction of wellbore breakouts) towards alternative directions, ultimately leading to the whole wellbore failure. These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
The damage parameter is a variable used to describe the transition of geomaterials from a bonded state to an unbonded state. The correct expression of the damage evolution of structured soil is crucial in establishing constitutive models for structured soils. Currently, research on damage laws typically involves assuming expressions for damage parameters and then fitting these parameters using experimental results to establish the damage law. The rationality and applicability of these damage laws are yet to be validated. To derive a unified expression for the damage law of structured sands incorporating microscopic mechanisms, a prediction model based on symbolic regression is proposed. Firstly, using the definitions of damage parameters with microscopic physical significance, various damage databases are constructed using the distinct element method (DEM). Secondly, preliminary parameter screening is conducted on isotropic compression and constant p true triaxial compression stress paths using a method that combines input variables. p is the average effective stress. Combined with the genetic programming-based symbolic regression (GPSR), damage expressions with different complexities are derived. Finally, the best-performing expression is selected as the damage law for structured sand, namely the GPSR damage law, based on an analysis of prediction and generalization errors. The applicability of different expressions is compared using various DEM damage databases. The results show that the GPSR damage law represents damage parameters as functions of plastic deviatoric strain epsilon(s), normalized mean effective stress p/p(y) and coefficient of intermediate principal stress b. It effectively reflects the transition from structured soil to remolded soil. The outstanding prediction ability of the GPSR damage law on different damage databases further demonstrates its applicability to various geomaterials. The research findings are valuable to establish constitutive models for structured sands.