共检索到 2

The piezocone (CPTu) dissipation test is used to characterize how the applied load from the penetrating cone is distributed between the soil and pore fluid during both penetrometer advancement and when penetration is paused. The coefficient of consolidation is often estimated from CPTu dissipation tests by interpreting the rate of excess porewater pressure ( triangle u ) decay to static conditions during a pause in cone penetration. Most CPTu dissipation test interpretation methods are based on Terzaghi consolidation theory for triangle u dissipation at the cone shoulder ( u 2 position) or cone face ( u 1 position) and assume that radial triangle u dissipation dominates the response. However, several recent studies show that vertical triangle u migration does contribute to the response. This study uses a large deformation direct axisymmetric cone penetration model to characterize the soil-water mechanical response during CPTu dissipation tests, and in particular, the role of vertical triangle u dissipation on the response at the u 1 and u 2 positions. Large deformations around the penetrating cone are accommodated with an Arbitrary Lagrangian Eulerian approach. Soil behavior is modeled with the MIT-S1 constitutive model calibrated for Boston blue clay (BBC) soil behavior. triangle u dissipation following undrained cone penetration is simulated with coupled consolidation for BBC with over-consolidation ratios (OCR) of 1, 2, and 4 and a range of hydraulic conductivity anisotropy. The simulated u 1 and u 2 dissipation responses are presented to study how they are affected by OCR and hydraulic conductivity anisotropy. A correction factor is recommended to account for hydraulic conductivity anisotropy when interpreting the horizontal coefficient of consolidation from CPTu dissipation tests.

期刊论文 2024-05-31 DOI: 10.3389/fbuil.2024.1386803

The piezocone penetration test (CPTu) is a common geotechnical field test to evaluate soil properties. In interpreting the CPTu field measurements, soil drainage conditions are mostly considered completely drained or undrained; however, partial drainage conditions govern for such soils as silts or clayey sand mixtures. Previous studies show that neglecting partial drainage conditions causes incorrect estimation of soil geotechnical parameters. Most studies have been conducted using calibration chambers and centrifuge tests on clayey soils. Due to the complications in modeling the piezocone test, few numerical studies have been performed under partially drained conditions, especially on coarse-grained soils. Among the challenges of numerical modeling of CPTu, one can mention the difficulty of modeling soil structure in large strain mode and soil-water interaction behavior. In this paper, piezocone penetration tests were modeled using the advanced hypoplastic constitutive model and finite-element method. The behavior of Firoozkooh sandy soil under different drainage conditions and relative densities was analyzed. Then, the effect of cone penetration on the surrounding soils was discussed. It was shown that drainage conditions and the soil relative densities significantly affected the trend of variations in excess pore-water pressure (EPWP) generated around the piezocone.

期刊论文 2024-04-01 DOI: 10.1061/IJGNAI.GMENG-8812 ISSN: 1532-3641
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页