共检索到 2

Many single-use plastic (SUP) options made of synthetic polymers, bio-based materials, and blends of both are available in the market and used in large quantities. The disintegration of eleven commercial SUP, marketed in Mexico as cups and plates, was investigated in an aerobic home compost environment at a laboratory scale over 180 days. An evaluation of chemical changes, surface morphology, and thermal and mechanical properties was conducted to ascertain the original composition of SUP and the progression of disintegration in samples that are challenging to clean from soil contamination. Furthermore, the impact of residual compost on barley (Hordeum vulgare) plant growth and its correlation with the leaching of heavy metals were explored. The bio-based SUP, but not those made of expanded polystyrene foam, showed a correlation between the disintegration degree (measured by weight loss into particles <2 mm) and a decrease in functional groups (observed by FT-IR), mechanical-thermal stability loss, and surface wear over disintegration time. For instance, the highest disintegration at 180 days was approximately 70 % for wheat bran and palm leaf plates, followed by wheat plates and cellulose-PLA cups (60 %). In addition to the components listed by the manufacturers, the FT-IR and DSC analysis revealed the presence of polyethylene and polypropylene in cellulose cups and sugarcane plates. These components, impede disintegration but contribute to preserving thermal resistance and hydrophobicity during utilization. Compost derived from expanded polystyrene foam SUP, with 90 days of disintegration, was rich in zinc and chromium and significantly decrease in the root length of the barley plant compared to the control. This demonstrates the necessity of considering the impact of the leaching of additives and secondary microplastics into the environment.

期刊论文 2024-12-01 DOI: 10.1016/j.polymdegradstab.2024.111071 ISSN: 0141-3910

The content of clay particles has a key influence on the physical and mechanical properties of microbial solidified granite residual soil. Microbial-induced calcite precipitation (MICP) treatment method of mixing + grouting was used to prepare microbial solidified granite residual soil samples with different clay contents and to explore the influence of clay content on the reinforcement effect of microbial solidified granite residual soil. A series of direct shear tests, disintegration tests, and microscopic observation tests was conducted to quantitatively analyze the influence of clay content on the shear strength and disintegration resistance of microbial solidified granite residual soil. The conclusions are summarized as follows: the shear strength and disintegration resistance of granite residual soils solidified by MICP treatment were remarkably improved, with the shear strength increasing by 9%similar to 16% when the clay content varied from 10%similar to 40%. The internal friction angle of the granite residual soil with different clay contents increased and then decreased with the increase in clay content. The cohesion of the microbial solidified granite residual soil increased with the increase in clay content, and the internal friction angle reached a minimum of 20% clay content (17.27 degrees), which is 31.85% lower than that of 0% clay content (25.34 degrees). The cohesion of the microbial solidified granite residual soil reached a maximum of 40% clay content (39.54 kPa), which is 8.69 times higher than that of 0% clay content (4.55 kPa). The MICP treatment technology is capable of effectively improving the shear strength and disintegration resistance of granite residual soils. The MICP treated process produces calcium carbonate precipitates that link the sand particles and fill the pores between the soil particles, increasing the number of larger agglomerates in the granite residual soil, which is the essential reason for the improvement in the softening and disintegration of the granite residual soil when exposed to water.

期刊论文 2024-01-12 DOI: 10.1016/j.conbuildmat.2023.134659 ISSN: 0950-0618
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页