共检索到 2

Char-EC and soot-EC in the atmosphere produced from different fuel combustion have distinct optical properties which lead to different radiative forcing. Pollutants transported into high-altitude environment could have a long-lasting radiative effect due to being free of deposition. In this study, the mass absorption cross- (MAC), the sources, transport pathways and the direct radiative effects (DREs) of soot-EC and char-EC were investigated at a peak of Mountain Hua (Mt. Hua) in China. The measurement results showed that soot-EC and char-EC account for 15.7 % and 84.3 % of EC, respectively. The mean MAC (lambda = 633 nm) of soot-EC (13.7 +/- 3.8 m(2)/g) was much higher than that of char-EC (5.4 +/- 2.5 m(2)/g), indicating a stronger light absorption ability for soot-EC. During the study period, 62.1 % char-EC was from anthracite chunk coal, 24.3 % of it from liquid fuel combustion. By contrast, 59.0 % soot-EC from liquid fuel combustion and 36.6 % of it from anthracite chunk coal. EC (both char-EC and soot-EC) produced from anthracite chunk coal reached the peak of the Mt. Hua primarily through the raising of the planetary boundary layer (PBL), while the EC produced from liquid fuel arrived the peak mainly by the regional transport above the PBL of the site. Although soot-EC has a stronger ability (2.8 times higher) to absorb the light compared with char-EC, its DRE (5.7 +/- 3.9 W m(-2)) was lower than that of char-EC (11.6 +/- 6.9 W m(-2)) due to the smaller mass quantity. Liquid fuel consumption contributed 3.5 +/- 2.9 W m(-2) DRE of soot-EC, while the combustion of anthracite chunk coal contributed 7.5 +/- 5.7 W m(-2) DRE of char-EC. This study highlights the differences in DREs of soot-EC and char-EC from fossil fuel combustion and the DRE mass efficiency of soot-EC and char-EC. The results emphasize the divergent climate warming effects caused by the combustion of different fossil fuels and imply that setting path to a green transition of energy use would benefit reducing the EC perturbation to the radiation balance of earth-atmosphere.

期刊论文 2024-04-01 DOI: 10.1016/j.fuel.2023.130632 ISSN: 0016-2361

Regional heterogeneity in direct and snow albedo forcing of aerosols over the Himalayan cryosphere was investigated using a regional climate model coupled with the community land model having snow, ice and aerosol radiation module. Deposition of absorbing aerosols like dust (natural) and black carbon (BC) (anthropogenic) decreases the snow albedo (snow darkening) over the Himalayas. Western Himalayas experiences a large reduction in the snow albedo (0.037) despite having lower BC mass concentration compared to central (0.014) and eastern (0.005) Himalayas. The contribution of BC and dust to the snow albedo reduction is comparable over the western and eastern Himalayas. The inclusion of aerosol-induced snow darkening in to the model reduces its bias with respect to the satellite derived surface albedo by 59%, 53% and 35% over western, central and eastern Himalayas respectively during the spring season. Since surface albedo decides the sign and magnitude of aerosol direct radiative forcing, aerosol induced snow darkening significantly affects the direct radiative effects of aerosols. Hence, the aerosol-induced decrease in snow albedo causes an early reversal in the sign of aerosol direct radiative forcing at the top of the atmosphere from warming to cooling over the western and central Himalayas, which can have implications in the radiation balance and water security over the region.

期刊论文 2021-06-01 DOI: 10.1088/1748-9326/abf190 ISSN: 1748-9326
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页