With the increasing demand for environmentally friendly and sustainable materials, research on cellulose/bio-based polyester composites has received increasing attention. However, the hydrophilicity of cellulose remains a major factor in its poor interaction with hydrophobic bio-based polyester. To prepare microcrystalline cellulose (MCC)/poly(butylene succinate) (PBS) composite monofilaments with high cellulose content to suppress the deformation of PBS, hexadecyltrimethoxysilane (KH1631) was selected for surface silylation of MCC at a mass ratio of 1:0.5 based on the principle of polarity similarity. The physical-chemical double crosslinking of KH1631 with MCC enhanced the interfacial bonding between MCC and PBS, so composite monofilaments with modified MCC (named mMCC) contents up to 35 wt% were prepared by melt spinning. After thermal stretching, mMCC/PBS composite monofilaments exhibited uniformly distributed microporous structure and double yield behaviors. Despite the continuous decrease in breaking strength (from 210 to 84 MPa) and elastic modulus (from 1380 to 590 MPa) due to the addition of mMCC, the yield strength (116 MPa) of the mMCC/PBS composite monofilaments was consistent with that of PBS when the mMCC addition reached 25 wt%, indicating no impact on usage intensity. Moreover, mMCC/PBS composite monofilaments showed excellent tensile elasticity (up to 95%), excellent fatigue resistance, and low residual strains under small deformation (15%). Notably, the addition of 15-35 wt% mMCC increased the degradability of composite monofilaments, the degradation rate following 100 days of treatment in an aqueous environment ranged from 3.8%(PBS) to 4.7% (P-mM25), and the degradation rate following 180 days of burial in soil ranged from 3.9%(PBS) to 12.3% (P-mM35). Overall, our work significantly enhanced the compatibility between MCC and PBS without the use of any high-cost modifiers or complex processing methods, and successfully developed mMCC/PBS composite monofilaments that exhibit excellent dimensional stability during use and quick degradation after disposal.
National Highway G559 is the first highway in Southeast Tibet into Motuo County, which has not only greatly improved the difficult situation of local roads, but also promoted the economic development of Tibet. However, rainfall-induced shallow landslides occur frequently along the Bomi-Motuo section, which seriously affects the safe operation and construction work of the highway. Therefore, it is urgent to carry out geological disaster assessment and zoning along the highway. Based on remote-sensing interpretation and field investigation, the distribution characteristics and sliding-prone rock mass of shallow landslides along the Bomi-Motuo Highway were identified. Three-dimensional stability analysis of regional landslides along the Bomi-Motuo Highway under different rainfall scenarios was carried out based on the TRIGRS and Scoops3D coupled model (T-S model). The temporal and spatial distribution of potential rainfall landslides in this area is effectively predicted, and the reliability of the predicted results is also evaluated. The results show that: (1) The slope structure along the highway is mainly composed of loose gravel soil on the upper part and a strong weathering layer of bedrock on the lower part. The sliding surface is mostly a circular and plane type, and the main failure types are creep-tensile failure and flexural-tensile failure. (2) Based on the T-S coupling model, it is predicted that the potential landslide along the Bomi-Motuo Highway in the natural state is scattered. The distribution area of extremely unstable and unstable areas accounts for 4.92% of the total area. In the case of extreme rainfall once in a hundred years, the proportion of instability area (Fs < 1) predicted by the T-S coupling model 1 h after rainfall is 7.74%, which is 1.57 times that of the natural instability area. The instability area (Fs < 1) accounted for 43.40% of the total area after 12 h of rainfall. The potential landslides were mainly distributed in the Bangxin-Zhamu and the East Gedang section. (3) The TRIGRS and T-S coupling model is both suitable for predicting the temporal-spatial distribution of rainfall-induced shallow landslides, but the TRIGRS model has the problem of over-prediction. The instability area predicted by the T-S coupling model accounted for 43.30%, and 74% of the historical landslide disaster points in the area were correctly predicted. (4) In terms of rainfall response, the T-S coupling model shows higher sensitivity. The %LRclass (Fs < 1) index of the T-S coupling model is above 50% in different time periods, and its landslide-prediction effect (%LRclass = 78.80%) was significantly better than that of the one-dimensional TRIGRS model (%LRclass = 45.50%) under a 12 h rainfall scenario. The research results have important reference significance for risk identification and disaster reduction along the G559 Bomi-Motuo Highway.