Micron-scale crack propagation in red-bed soft rocks under hydraulic action is a common cause of engineering disasters due to damage to the hard rock-soft rock-water interface. Previous studies have not provided a theoretical analysis of the length, inclination angle, and propagation angle of micron-scale cracks, nor have they established appropriate criteria to describe the crack propagation process. The propagation mechanism of micron-scale cracks in red-bed soft rocks under hydraulic action is not yet fully understood, which makes it challenging to prevent engineering disasters in these types of rocks. To address this issue, we have used the existing generalized maximum tangential stress (GMTS) and generalized maximum energy release rate (GMERR) criteria as the basis and introduced parameters related to micron-scale crack propagation and water action. The GMTS and GMERR criteria for micron-scale crack propagation in red-bed soft rocks under hydraulic action (abbreviated as the Wmic-GMTS and Wmic-GMERR criteria, respectively) were established to evaluate micron-scale crack propagation in red-bed soft rocks under hydraulic action. The influence of the parameters was also described. The process of micron-scale crack propagation under hydraulic action was monitored using uniaxial compression tests (UCTs) based on digital image correlation (DIC) technology. The study analyzed the length, propagation and inclination angles, and mechanical parameters of micron-scale crack propagation to confirm the reliability of the established criteria. The findings suggest that the Wmic-GMTS and Wmic-GMERR criteria are effective in describing the micron-scale crack propagation in red-bed soft rocks under hydraulic action. This study discusses the mechanism of micron-scale crack propagation and its effect on engineering disasters under hydraulic action. It covers topics such as the internal-external weakening of nano-scale particles, lateral propagation of micron-scale cracks, weakening of the mechanical properties of millimeter-scale soft rocks, and resulting interface damage at the engineering scale. The study provides a theoretical basis for the mechanism of disasters in red-bed soft-rock engineering under hydraulic action. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V.
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures, such as concrete gravity dams. Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces, understanding of these factors remains very limited. This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings. Digital image correlation (DIC) and acoustic emission (AE) techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading (Brazilian tests). The results indicated that the direct tensile strength of the rockmortar specimens was lower than their indirect tensile strength, with a direct/indirect tensile strength ratio of 65%. DIC strain field data and moment tensor inversions (MTI) of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test. The presence of these shear microcracks, which require more energy to break, resulted in a higher tensile strength during the Brazilian tests. In contrast, microcracks were predominantly tensile in specimens subjected to direct tension, leading to a lower tensile strength. Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test, whereas they show a minimal number of AE events before failure under direct tension. Due to different microcracking mechanisms, specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces. The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).