共检索到 10

Thallium (Tl) is a highly toxic heavy metal. It is widely spread in soil. However, the effects of Tl on soil invertebrates have received limited attention. Eisenia fetida, a sensitive and widely used bioindicator, is important in assessing ecological risks in soil ecosystems. It is conceivable that the stress resistance of E. fetida may vary depending on its diet, potentially influencing the assessment of ecological risks associated with contaminants. This study aims to assess the toxicological effects of Tl in soil on E. fetida, focusing on mechanisms involving Tlinduced oxidative stress, disruption of antioxidant defenses, and diet-mediated differences in physiological tolerance. E. fetida was nourished with yogurt waste or cow dung as their primary food source before exposure. The research showed a significant correlation between the increase in soil Tl levels and its bioaccumulation in E. fetida. The highest Tl accumulation was observed in E. fetida fed with yogurt waste (5.55 mu g g-1), exceeding those fed with cow dung (4.77 mu g g-1). Tl inhibited the growth of E. fetida and induced oxidative stress responses. The activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) initially increased at lower concentrations and earlier time points but were suppressed at higher Tl concentrations and longer exposures. In contrast, glutathione S-transferase (GST) and glutathione peroxidase (GPx) activities were generally elevated, especially in yogurt waste-fed worms. Additionally, reduced glutathione (GSH) levels declined over time, while malondialdehyde (MDA) levels increased significantly, indicating lipid peroxidation and oxidative damage. Furthermore, the Integrated Biomarker Response index indicated that cow dung-fed E. fetida exhibited a higher level of toxic stress when compared to those fed with yogurt waste. In a comparative analysis, despite accumulating more Tl, yogurt waste-fed E. fetida exhibited a lower overall toxic response than their cow dung-fed counterparts. Our results suggest that the diet, specifically yogurt waste, can enhance Tl tolerance in E. fetida. Hence, when assessing the ecological risk of Tl concerning earthworms, it is imperative to consider their dietary sources to increase the scientific validity of evaluation results.

期刊论文 2025-09-01 DOI: 10.1016/j.apsoil.2025.106246 ISSN: 0929-1393

Rhizoctonia solani is a significant soil-borne pathogenic fungus that poses a significant threat to the economically important agricultural crops. 4-(Diethylamino)salicylaldehyde (DSA) is a secondary metabolite produced by Streptomyces sp. KN37, which has antifungal activity, meanwhile its inhibitory mechanism is still unclear. In this study, we explored the antifungal efficacy of DSA and its potential mechanism of inhibiting R. solani. It was found that DSA exhibited significant antifungal activity against six tested plant pathogenic fungi, with R. solani being the most sensitive (EC50 = 26.904 mu g/mL). Notably, DSA effectively reduced the mycelial mass and inhibited sclerotia germination, demonstrating a good control efficacy of cucumber damping-off disease. Morphological observation showed that DSA significantly disrupted the shape and ultrastructure of the mycelium. Transcriptomic and metabolomic analyses revealed that DSA impacted the integrity of the cell membrane, redox processes, and energy metabolism in R. solani. The results of fluorescence staining, relative conductivity, H2O2 content, and antioxidant enzyme activity showed that the accumulation of ROS in hypha cells after DSA treatment possibly resulted in damage to cell membrane integrity. Furthermore, the reduction in ATP content, along with decreased ATPase and citrate synthase activity, indicates that energy production may be inhibited. Molecular docking analysis further showed that DSA may competitively inhibit citrate synthase, thereby inhibiting cell energy production and ultimately inducing apoptosis. Our study provides new insights into the potential mechanism by which DSA inhibits the mycelial growth of R. solani.

期刊论文 2025-08-01 DOI: 10.1016/j.pestbp.2025.106444 ISSN: 0048-3575

United Nations General Assembly declared that 2023 will be celebrated as the International Year of Millets. Millets are a group of coarse grains from the Poaceae family that offer numerous benefits that align with various United Nations Sustainable Development Goals (UN SDGs). This review explores diverse contributions of millet cultivation, consumption, and value addition with UN SDGs. The millets help in combating hunger by providing economical sources of essential nutrients and diversifying diets, improving health through mitigating malnutrition and diet-related diseases. Millet's lower water demand and resilience to climatic stress help in sustainable water management. Millets reduce the risks associated with monoculture farming and promote sustainable agricultural practices. Similarly, millet plants need few chemical fertilizers, and the ecological damage associated with these plants is minimized. Millets can prevent soil degradation and conserve biodiversity. They can adapt to diverse cropping systems and support sustainable land practices. Millet cultivation reduces inequalities by empowering smallholder farmers and maintaining economic balance. The cultivation and trading of millets promote partnerships among governments, NGOs, and businesses for sustainable development. The ability of millet to contribute to poverty reduction, hunger alleviation, health improvement, environmental sustainability, and economic development makes millet a sustainable choice for a better world.

期刊论文 2025-05-26 DOI: 10.1515/znc-2024-0096 ISSN: 0939-5075

Rare earth elements (REEs) are increasingly recognized as significant environmental pollutants due to their environmental persistence, bioaccumulation, and chronic toxicity. This study assessed REEs pollution in soil, water, and vegetables in an ion-adsorption rare earth mining area in Ganzhou, and evaluated the associated health risks to the local population. Results indicated that the REEs content in soil ranged from 168.58 to 1915.68 mg/kg, with an average of 546.71 mg/kg, substantially surpassing the background level for Jiangxi Province (243.4 mg/kg) and the national average (197.3 mg/kg). Vegetables displayed an average REEs content of 23.17 mg/kg in fresh weight, far exceeding the hygiene standard of 0.7 mg/kg. Water samples contained REEs at a concentration of 4.09 mu g/L. The estimated daily intake (EDI) of REEs from vegetables exceeded the threshold for subclinical damage, posing potential health risks, particularly for children and adolescents. Further analysis of the adjusted average daily intake (ADI) and non-carcinogenic risk suggested that while most vegetable consumption remains within safe threshold, the intake of REEs from high-risk vegetables such as pakchoi should be limited. Overall, carcinogenic risks associated with lifetime cancer risk (LCR) model for REEs exposure through vegetables and water were found to be low in this area.

期刊论文 2025-04-01 DOI: 10.1007/s10653-025-02426-8 ISSN: 0269-4042

Enhancing the catalytic activity of inorganic minerals is crucial for advancing wastewater treatment technologies. In this study, carbon and lab-scale minerals were combined to develop a novel carbon-based material, termed paired mineral carbon (PMC), using rice husk (RH) as the carbon source. Montmorillonite (MMt), goethite (GTt), and hybrid of goethite and MMt were utilized to prepare the PMC. The resulting material exhibited an increased specific surface area of 187 m2g-1, and demonstrated exceptional activation efficiency of peroxymonosulfate (PMS) for degrading diethyl phthalate (DEP). A pseudo-first-order kinetic constant (k1) of 0.923 min-1 was achieved at pH 6.0. Pairing minerals synergistically altered PMC's structure, which had the highest ID/IG ratio (0.87) indicative of abundant defective sites in its hierarchical porous structure. Reactive species such as SO4 center dot-, center dot OH, and 1O2 were identified as key contributors to DEP degradation through electron spin resonance (ESR) and quencher experiment. Density functional theory (DFT) calculations further revealed preferential radical attack on DEP at specific atomic sites (f0 values: 0.0837-0.1027). Furthermore, the lab-scale synthesized PMC costs $8.08 kg-1. More versatile than commercial activated carbon ($10 kg-1). The simple, adaptive, scalable synthesis optimizes industrial costs. Moreover, phytotoxicity assessment demonstrated that PMC/PMS treatment significantly reduced DEP toxicity, promoting healthier growth of Raphanus sativus and Zea mays seedlings. These findings highlight the potential of PMC as an eco-friendly, efficient and economical catalyst for advanced wastewater treatment, offering a sustainable approach to managing both chemical pollutant and herbicide phytotoxicity.

期刊论文 2025-03-15 DOI: 10.1016/j.cej.2025.160321 ISSN: 1385-8947

Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison. Despite their structural similarities, findings from cultured human cells and gut sac experiments showed that AA-I is absorbed more effectively than AA-II (similar to 3 times greater for AA-I than for AA-II; p < 0.001). This increased absorption, along with the previously observed higher activity of reductive activation enzymes for AA-I, results in greater DNA damage and oxidative stress, both of which are key factors in AA-related toxicity. The similar patterns of cell mortality (34.4 +/- 2.3% vs 9.7 +/- 0.1% for AA-I and AA-II at 80 mu M; p < 0.0001), DNA adduct formation (similar to 3 times greater for AA-I than for AA-II; p < 0.001), and oxidative stress levels in relation to the concentrations of AA-I and AA-II indicate that the higher absorption rate of AA-I is a significant contributor to its greater toxicity. The toxicity of AA-I was also found to be further enhanced by its (natural) coexistence with AA-II. Since AA-I and AA-II differ only by a methoxy group, future research on reducing risks associated with AA exposure should focus on strategies to lower the absorption of these compounds.

期刊论文 2025-01-14 DOI: 10.1021/acs.jafc.4c10765 ISSN: 0021-8561

Daurian Pika ( Ochotona dauurica) are steppe-dwelling burrowing mammals with the potential to have large effects on central Asian grasslands due to their extensive range, propensity to occur at extremely high density, and roles as ecosystem engineers and important prey species. The few studies that have been done are mostly from northern China and Russia, while little research has been done in the majority of their range in Mongolia. We studied a population of Daurian Pika in the Darhad Valley of northern Mongolia, near the southern edge of the permafrost, where climate change is progressing rapidly. We evaluated pika populations at 87 random plots across a large 40 x 125 km area and assessed the impact of factors related to vegetation cover, grazing, and soils that predicted their occupancy and an index of their density (number of active burrows). We found that pikas were more likely to occur in areas with taller grass and higher forb cover, and burrow densities were higher in areas with low or moderate grazing and lower soil moisture. In summer, pikas mainly foraged on grass compared with forbs-while in fall, forbs appeared to be selected for in haypiles. Dense pika burrow systems had taller grasses and forbs in their immediate vicinity, suggesting that in some cases, pika could help promote plant growth for other grazers. Long-tailed Ground Squirrel (Urocitellus undulatus) was the second most abundant small mammal in our study sight and selected for areas with high cover of overgrazing indicator species and for short forbs, providing little evidence for competition with Daurian Pika. Our results suggest that shorter grass (similar to 1 cm) can decrease pika occupancy by 75%, while heavy grazing may decrease burrow density by 66% in dry soils. With grazing pressure in Mongolia increasing dramatically since the 1990s, future research is strongly needed to assess the impacts of grazing on this keystone species.

期刊论文 2024-11-15 DOI: 10.1093/jmammal/gyae132 ISSN: 0022-2372

Cadmium (Cd) exposure in humans primarily occurs through dietary intake, with conventional one-compartment toxicokinetic (TK) models linking dietary Cd intake to urinary Cd (UCd) levels, predominantly in Western populations with low background exposure. However, the applicability of this model to regions with high dietary Cd intake, particularly from rice consumption, remains uncertain. In this study, we conducted a comprehensive population-based survey involving 686 individuals from a typical Cd-polluted area and 296 from a non-polluted area in China, where rice serves as the staple food in both regions. Additionally, we selected 34 individuals from the polluted area for a 27-month intervention, during which home-grown high-Cd rice was replaced with low-Cd rice available in the market. We closely monitored temporal changes in Cd concentration and stable isotope signatures in urine samples. The adults in the polluted area had much higher dietary Cd intakes (mean 58.5 mu g kg-1 body weight month-1) and UCd (geometric mean 6.1 mu g g-1 creatinine) than those in the non-polluted area. There was a robust dose-response relationship (R2 = 0.67, n = 982) between UCd and beta 2-microglobulin, a biomarker of renal tubular impairment. The intervention reveals that a considerable proportion of Cd rapidly exuded after recent dietary intake, contradicting the conventional TK model. The modified TK model incorporating the direct blood-urine allocation greatly improved the association between dietary Cd intake and UCd. These results underscore the potential for high dietary Cd intake through rice in China to cause dose-dependent kidney damage. The modified TK model offers a reliable framework to estimate Cd-related thresholds and associated health risks for populations reliant on rice-based diets.

期刊论文 2024-10-01 DOI: 10.1007/s12403-023-00615-3 ISSN: 2451-9766

Balkan endemic nephropathy (BEN) is a chronic kidney disease that predominantly affects inhabitants of rural farming communities along the Danube River tributaries in the Balkans. Long-standing research has identified dietary exposure to aristolochic acids (AAs) as the principal toxicological cause. This study investigates the pathophysiological role of anemia in BEN, noting its earlier and more severe manifestation in BEN patients compared to those with other chronic kidney diseases. Utilizing a mouse model, our research demonstrates that prolonged exposure to aristolochic acid I (AA-I) (the most prevalent AA variant) leads to significant red blood cell depletion through DNA damage, such as DNA adduct formation in bone marrow, prior to observable kidney function decline. Furthermore, in vitro experiments with kidney cells exposed to lowered oxygen and pH conditions mimicking an anemia environment show enhanced DNA adduct formation, suggesting increased AA-I mutagenicity and carcinogenicity. These findings indicate for the first time a positive feedback mechanism of AA-induced anemia, DNA damage, and kidney impairment in BEN progression. These results not only advance our understanding of the underlying mechanisms of BEN but also highlight anemia as a potential target for early BEN diagnosis and therapy.

期刊论文 2024-08-01 DOI: 10.1021/acs.jafc.4c03508 ISSN: 0021-8561

Bakery products, especially bread, exist in many homes worldwide. One of the main reasons for its high consumption is that the main raw material is wheat, a cereal that can adapt to a wide variety of soils and climates. However, the nutritional quality of this raw material decreases during its industrial processing, decreasing the value of fibers, proteins, and minerals. Therefore, bread has become a product of high interest to increase its nutritional value. Due to the high consumption of bread, this paper provides a general description of the physicochemical and rheological changes of the dough, as well as the sensory properties of bread by incorporating alternative flours such as beans, lentils, and soy (among others). The reviewed data show that alternative flours can improve fiber, macro, and micronutrient content. The high fiber content reduces the quality of the texture of the products. However, new processing steps or cooking protocols, namely flour proportions, temperature, cooking, and fermentation time, can allow adjusting production variables and optimization to potentially overcome the decrease in sensory quality and preserve consumer acceptance.

期刊论文 2024-07-01 DOI: 10.3390/foods13132062
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页