共检索到 11

Conventional in-situ light non-aqueous phase liquid (LNAPL) remediation techniques often face challenges of high costs and limited efficiency, leaving residual hydrocarbons trapped in soil pores. This study investigates the efficiency of an alcohol-in-biopolymer emulsion for enhancing diesel-contaminated soil remediation. The emulsion, formulated with xanthan gum biopolymer, sodium dodecyl sulfate surfactant, and the oil-soluble alcohol 1-pentanol, was evaluated through rheological tests, interfacial tension measurements, and onedimensional sand-column experiments under direct injection and post-waterflooding scenarios. The emulsion exhibited non-Newtonian shear-thinning behavior with high viscosity, ensuring stable propagation and efficient delivery of 1-pentanol to mobilize trapped diesel ganglia. It achieved 100 % diesel recovery within 1.2 PV during direct injection, outperforming shear-thinning polymer-only and polymer-surfactant solutions, which achieved recovery factors of 83.4-92.9 %. Post-waterflooding experiments also demonstrated 100 % diesel recovery within 1.3 PV, regardless of initial diesel saturation. Key mechanisms include reduced interfacial tension, diesel swelling and mobilization induced by 1-pentanol, and uniform displacement facilitated by the emulsion's viscosity. Additionally, the emulsion required lower injection pressures compared to more viscous alternatives, enhancing its injectability into the soil and reducing energy demands. These findings highlight the emulsion's potential to overcome conventional remediation limitations, offering a highly effective and sustainable solution for diesel-contaminated soils and groundwater.

期刊论文 2025-07-15 DOI: 10.1016/j.jhazmat.2025.138183 ISSN: 0304-3894

Conventional pump-and-treat technologies have demonstrated limited effectiveness in remediating soils contaminated with light non-aqueous phase liquids (LNAPLs), such as petroleum hydrocarbons. Nonconventional in-situ flushing with shear-thinning fluids, such as polymers, offers a promising alternative. However, even with polymer flushing, residual LNAPL ganglia may remain trapped in porous media, requiring further improvement of the flushing fluid to enhance remediation efficiency. In this study, we present a novel alcohol-in-biopolymer emulsion developed to enhance the recovery of residual diesel oil from porous media. Batch experiments were conducted to evaluate the partitioning behavior of fifteen different alcohols between the aqueous and diesel phases. The results revealed that 1-pentanol preferentially partitions into the diesel phase rather than the aqueous phase, leading to an increase in diesel oil volume via a swelling mechanism. Furthermore, 1-pentanol forms a stable and homogeneous emulsion when combined with an aqueous solution of the biopolymer xanthan gum, and the surfactant sodium dodecyl sulfate. The emulsion demonstrated high stability for over 30 days, ensuring its suitability for prolonged remediation processes. Rheological experiments confirmed the emulsion's shear-thinning behavior, which ensures stable and uniform displacement within porous media. A two-dimensional cell packed with silica sand was used to evaluate the efficiency of the emulsion in removing residual diesel oil. The results demonstrated that the emulsion propagates uniformly throughout the porous media, effectively achieving complete removal of residual diesel within 1.15 pore volumes of injection. Porescale visualizations revealed the swelling and subsequent mobilization of entrapped diesel ganglia induced by the emulsion, further confirming its efficacy. These findings highlight the potential of this novel alcohol-inbiopolymer emulsion to significantly improve diesel oil recovery from contaminated soils.

期刊论文 2025-05-01 DOI: 10.1016/j.hazadv.2025.100616 ISSN: 2772-4166

Diesel spills and nuclides pollution cause global ecosystem and human health problems. The remediation of contaminated soil using woody plants has received considerable attention. Differences in plant species and sex can lead to differences in tolerance to various stressors. We aimed to investigate the response of male and female seedlings of Populus cathayana and Salix babylonica to diesel and Sr2+ stress and to compare the enrichment characteristics of Sr2+ in trees. Male and female seedlings of P. cathayana and S. babylonica were treated with diesel fuel and 0, 10 (low), and 100 (high) mg Kg(-1) of Sr2+. Results showed that P. cathayana and S. babylonica had good enrichment characteristics and tolerance. S. babylonica had a more robust tolerance and ability to remediate contaminated soil than P. cathayana. The defense mechanisms of both female seedlings in response to stress were similar, while males showed different defense strategies. Male trees had higher Sr2+ enrichment capacity, antioxidant enzymes, soil enzyme activity, and soluble matter content, indicating that males had higher tolerance capacity than females. Under diesel stress alone, the reduced photosynthetic rate of male seedlings of P. cathayana was mainly limited by stomatal factors, and their photosynthetic system was more tolerant to diesel. POD and APX activities, as well as alkaline phosphatase and urease activities in the soil, were significantly higher in S. babylonica seedlings than in P. cathayana, indicating that S. babylonica seedlings were more resistant to diesel pollution. At low concentrations of the Sr2+ complex, diesel and Sr2+ showed antagonistic effects in reducing the damage caused by stress. As the Sr2+ concentration increased, damage to the plants manifested primarily through synergistic enhancement. The results of this study provide a scientific basis for the remediation of diesel fuel and nuclides contaminated soils using woody plants.

期刊论文 2024-12-01 DOI: 10.3390/plants13243598 ISSN: 2223-7747

The deformation characteristics of soil after thermal desorption are crucial for the evaluation of engineering properties, but the evolution mechanism is currently unclear. This study focuses on the thermal desorption of contaminated soil, conducting Geo-dynamic Systems consolidation-rebound tests to reveal the evolution mechanism of consolidation-rebound deformation and pore pressure characteristics, and exploring the evolution mechanism through pore structure, particle size distribution, and Cation Exchange Capacity tests. Results show that the consolidation characteristics of uncontaminated soil increase and then decrease with heating temperature, with 400 degrees C as a turning point. In contrast, the consolidation deformation of contaminated soil continues to decrease. The vertical deformation of the soil in the pre/early consolidation stage is greater before 400 degrees C, while after 400 degrees C, the deformation continues to increase with consolidation pressure, and higher heating temperatures enhance the soil's rebound deformation ability. Pore water pressure changes in two stages, with temperature ranges of 100-300 degrees C and 300-600 degrees C, and with increasing heating temperature, the characteristics of pore pressure change from clay to sand. Mechanism tests reveal that inter-aggregate pores affect initial deformation, while intra-aggregate pores affect later deformation, both showing a positive correlation. Aggregate decomposition increases initial deformation capacity at 100-400 degrees C while melting body fragmentation increases later deformation capacity at 500-600 degrees C. CEC decreases with increasing heating temperature, reducing inter-particle resistance and increasing soil deformation capacity. Particle size distribution and Cation Exchange Capacity impact consolidation-rebound pore pressure.

期刊论文 2024-12-01 DOI: 10.3390/w16233433

Pollution from crude oil and its derivatives poses a serious threat to human health and ecosystems, with accidental spills causing substantial damage. Biodegradation, using microorganisms to break down these contaminants, presents a promising and cost-effective solution. Exploring and utilizing new bacterial strains from underexplored habitats could improve remediation efforts at contaminated sites. This study aimed to evaluate the hydrocarbon biodegradation capacity of bacteria isolated from agricultural soils in Huamachuco, Peru. Soil samples from Oca crops were collected and bacteria were isolated. Biodegradation assays were conducted using diesel as the sole carbon source in the Bushnell Haas Mineral medium. Molecular characterization of the 16S rRNA gene identified four strains. Diesel biodegradation assays at 1% concentration were performed under agitation conditions at 150 rpm and 30 degrees C, and monitored on day 10 by measuring cellular biomass (OD600), with hydrocarbons analyzed by gas chromatography. The results showed Pseudomonas protegens (PROM2) achieved the highest efficiency in removing total hydrocarbons (91.5 +/- 0.7%). Additionally, Pseudomonas citri PROM3 and Acinetobacter guillouiae ClyRoM5 also demonstrated high capacity in removing several individual hydrocarbons. Indigenous bacteria from uncontaminated agricultural soils present a high potential for hydrocarbon bioremediation, offering an ecological and effective solution for soil decontamination.

期刊论文 2024-09-01 DOI: 10.3390/microorganisms12091896

Thermal-optical fractions of organic carbon (OC), elemental carbon (EC), delta C-13 and optical properties of PM(2.5 )from Vehicular Fuel Emissions (VFEs) and Biomass Mixed Fuel Emissions (BMFEs) in India were examined. Heterogeneities in these species across Bharat Stage (BS) emission standards, vehicle type and cooking processes were also captured. Results suggest that distributions of OC and EC sub-fractions and Mass Absorption Efficiency (MAE) are driven by the fuel type, operating, combustion conditions, and emissions control strategies. Variability in thermal-optical fractions of carbon was useful not only in delineating VFEs and BMFEs but also in differentiating compositionally similar sources like gasoline and diesel. The mean delta C-13 value for diesel exhaust (- 26.3 +/- 1.3 parts per thousand) was marginally higher than the value (-27.0 +/- 1.2 parts per thousand) for gasoline and BMFEs. The Brown Carbon (BrC) content in VFEs was <10% while it constituted similar to 60% of the BMFEs. The MAE of both EC and OC of all the sources were calculated at 7 wavelengths (405 nm, 445, 532, 632, 780,808, and 980 nm) and heterogeneity was observed across vehicle types (higher MAEs for MUVs), fuel type (lowest MAEoc values for gasoline-powered vehicles) and BS divisions (BSII category vehicles shown highest MAEs) along with light absorption by OC and EC emitted by these sources. The results of this study characterizing the chemical, optical and isotopic signatures of PM2.5 from three major combustion sources will be useful in enhancing source identification and resolution in source apportionment efforts and in radiative forcing calculations.

期刊论文 2022-06-01 DOI: 10.1016/j.apr.2022.101443 ISSN: 1309-1042

Black carbon (BC) aerosols in the atmosphere strongly affect direct radiative forcing and climate, not only while suspended in the atmosphere but also after deposition onto high albedo surfaces. Snow surfaces are especially sensitive to BC deposition, because of their high surface albedo and additional positive feedbacks further enhance faster snowpack melting caused by BC deposition, resulting in modifications in water resources and recession of glaciers. For the analysis of BC deposition on snow, a precise quantification of BC mass is needed. Instead, optical methods have the potential of quantifying only BC, based on its characteristic spectral absorption. Commercial optical transmissometers commonly use quartz filters to filter BC and measure its optical attenuation. They are calibrated for the determination of BC mass concentrations in air, but not adapted or calibrated for their determination in water or snowmelt samples. Additionally, they are generally calibrated using BC-simulating materials that are not representative of ambient BC particles. Here, a new analytical method is demonstrated for the quantitative determination of BC mass concentration in snow samples that considers filtering of melted snow with polycarbonate filters in a new device, and optical filter attenuation BC mass concentration measurement (880 nm). The attenuation can be obtained with any optical equipment that can measure the 880-nm attenuation of filters impacted with BC/snow impurities. This method has been calibrated using real diesel vehicle exhaust soot with well-known optical properties as reference material, yielding a multipoint calibration curve for common BC concentration levels in snow. The limits of detection (0.011 mg of BC), quantification (0.036 mg of BC) and reproducibility (96.39%) of this new analytical method have been determined. Real surface snow samples collected at different locations in Los Andes mountains of Chile were measured with this method given a BC concentrations ranged from 151 to 5987 mu g kg(-1). (C) 2019 Elsevier B.V. All rights reserved.

期刊论文 2019-12-20 DOI: 10.1016/j.scitotenv.2019.133934 ISSN: 0048-9697

A comprehensive overview is provided evaluating direct real-world CO2 emissions of both diesel and petrol cars newly registered in Europe between 1995 and 2015. Before 2011, European diesel cars emitted less CO2 per kilometre than petrol cars, but since then there is no appreciable difference in per-km CO2 emissions between diesel and petrol cars. Real-world CO2 emissions of diesel cars have not declined appreciably since 2001, while the CO2 emissions of petrol cars have been stagnant since 2012. When adding black carbon related CO2 equivalents, such as from diesel cars without particulate filters, diesel cars were discovered to have had much higher climate relevant emissions until the year 2001 when compared to petrol cars. From 2001 to 2015 CO2 equivalent emissions from new diesel cars and petrol cars were hardly distinguishable. Lifetime use phase CO2 equivalent emissions of all European passenger vehicles were modelled for 1995-2015 based on three scenarios: the historic case, another scenario freezing percentages of diesel cars at the low levels from the early 1990s (thus avoiding the observed boom in new diesel registrations), and an advanced mitigation scenario based on high proportions of petrol hybrid cars and cars burning gaseous fuels. The difference in CO2-equivalent emissions between the historical case and the scenario avoiding the diesel car boom is only 0.4%. The advanced mitigation scenario would have been able to achieve a 3.4% reduction in total CO2-equivalent emissions over the same time frame. The European diesel car boom appears to have been ineffective at reducing climate-warming emissions from the European transport sector.

期刊论文 2019-02-01 DOI: 10.1016/j.atmosenv.2018.10.039 ISSN: 1352-2310

The use of biodiesel as a replacement for petroleum-based diesel fuel has gained interest as a strategy for greenhouse gas emission reductions, energy security, and economic advantage. Biodiesel adoption may also reduce particulate elemental carbon (EC) emissions from conventional diesel engines that are not equipped with after-treatment devices. This study examines the impact of biodiesel blends on EC emissions from a commercial off-road diesel engine and simulates the potential public health benefits and climate benefits. EC emissions from the commercial off-road engine decreased by 76% when ultra-low sulfur commercial diesel (ULSD) fuel was replaced by biodiesel. Model calculations predict that reduced EC emissions translate directly into reduced EC concentrations in the atmosphere, but the concentration of secondary particulate matter was not directly affected by this fuel change. Redistribution of secondary particulate matter components to particles emitted from other sources did change the size distribution and therefore deposition rates of those components. Modification of meteorological variables such as water content and temperature influenced secondary particulate matter formation. Simulations with a source-oriented WRF/Chem model (SOWC) for a severe air pollution episode in California that adopted 75% biodiesel blended with ULSD in all non-road diesel engines reduced surface EC concentrations by up to 50% but changed nitrate and total PM2.5 mass concentrations by less than +/- 5%. These changes in concentrations will have public health benefits but did not significantly affect radiative forcing at the top of the atmosphere. The removal of EC due to the adoption of biodiesel produced larger coatings of secondary particulate matter on other atmospheric particles containing residual EC leading to enhanced absorption associated with those particles. The net effect was a minor change in atmospheric optical properties despite a large change in atmospheric EC concentrations. These results emphasize the importance of considering EC mixing state in climate research. (C) 2015 Elsevier B.V. All rights reserved.

期刊论文 2015-12-15 DOI: 10.1016/j.scitotenv.2015.08.030 ISSN: 0048-9697

Diesel vehicles are a significant source of black carbon (BC) and ozone precursors, which are important contributors to climate warming, degrade air quality and harm human health. Reducing diesel emissions could mitigate near-term climate change with significant co-benefits. This study quantifies the global and regional climate impacts of BC and co-emitted short-lived climate forcers (SLCFs) from present-day on-road diesel vehicles, as well as future impacts following a current legislation emission scenario. Atmospheric concentrations are calculated by the chemical transport model OsloCTM2. The following radiative forcing (RF) and equilibrium surface temperature responses are estimated. For year 2010 on-road diesel emissions we estimate a global-mean direct RF from BC of 44 m W/m(2) and an equilibrium surface temperature response of 59 mK, including the impact of BC deposition on snow. Accounting for cooling and warming impacts of co-emitted SLCFs results in a net global-mean RF and warming of 28 mW/m(2) and 48 mK, respectively. Using the concept of Regional Temperature change Potential (RIP), we find significant geographical differences in the responses to regional emissions. Accounting for the vertical sensitivities of the forcing/response relation amplifies these differences. In terms of individual source regions, emissions in Europe give the largest regional contribution to equilibrium warming caused by year 2010 on-road diesel BC, while Russia is most important for Arctic warming per unit emission. The largest contribution to warming caused by the year 2050 on-road diesel sector is from emissions in South Asia, followed by East Asia and the Middle East. Hence, in regions where current legislation is not sufficient to outweigh the expected growth in activity, accelerated policy implementation is important for further future mitigation. (C) 2014 Elsevier Ltd. All rights reserved.

期刊论文 2014-12-01 DOI: 10.1016/j.atmosenv.2014.08.033 ISSN: 1352-2310
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共11条,2页