共检索到 2

To study the degree of strength parameter deterioration (DSPD) of Lushi swelling rock in the high slope area under wetting-drying cycles, 114 samples are remodeled. Wetting-drying cycle and triaxial tests are conducted to comprehensively analyze the influence of dry density, wetting-drying cycle path, and number of wetting-drying cycles on the strength deterioration characteristics of Lushi swelling rock. Using the fitting analysis and function superposition methods, the DSPD model of Lushi swelling rock under wetting-drying cycles is established, which considers the previous four influencing factors. The influence of the DSPD of Lushi swelling rock on the stability of high slopes under rainfall seepage and circulation conditions is studied. Lushi swelling rock exhibits significant strength deterioration characteristics under wetting-drying cycles. The overall DSPD for cohesion is higher than that of the internal friction angle. Under rainstorm conditions, strength deterioration leads to a shallower depth of the critical slip surface of the slope and a smaller safety factor. After eight rounds of rainfall seepage and circulation, the safety factor gradually decreases by approximately 14%-28%. This study provides and verifies the DSPD model of Lushi swelling rock under wetting-drying cycles, and the results could provide a basis for disaster prediction and the optimization design of swelling rock slopes.

期刊论文 2025-08-01 DOI: 10.1061/IJGNAI.GMENG-10701 ISSN: 1532-3641

To further enhance our understanding of the microstructure of SRM and its intrinsic relationship with macroscopic properties, this paper conducted indoor freeze-thaw cycles, EIS and uniaxial compression tests. The results indicated that the number of freeze-thaw cycles has a significant exponential relationship with RCPP, RCPP1 and CDSRP. As the number of cycles increased, RCPP and RCPP1 exhibited a decreasing trend, whereas CDSRP showed an increasing pattern. The freeze-thaw cycles led to the expansion and connection of different pores, resulting in the widening or multiplication of channels in CPP, leading to a decrease in both RCPP and RCPP1. However, in DSRPP, the liquid-filled pores underwent radial expansion during freeze-thaw cycles, connecting with gas-filled pores around them. This transition led the conductive path to transform into CPP, reducing the accumulated thickness of non-continuous points. Consequently, CDSRP exhibited an increasing trend. Furthermore, the increase in porosity weakened the deformation resistance, increasing the compaction stage of pores and the peak strain, while reducing its peak strength and secant modulus. The peak strength, strain and secant modulus also exhibited significant exponential relationships with different cycles. There was a good exponential correlation between Delta RCPP of CPP and the uniaxial strength, and the freeze-thaw deterioration model constructed with it as an influence factor could better assess its peak mechanical strength after freezing and thawing.

期刊论文 2024-07-26 DOI: 10.1016/j.conbuildmat.2024.136975 ISSN: 0950-0618
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页