Ground granulated blast furnace slag (GGBS), calcium carbide slag (CS), and phosphogypsum (PG) were combined in a mass ratio of 60:30:10 (abbreviated as GCP) to solidify dredged sludge (DS) with high water content. The long-term strength characteristics of solidified DS under varying curing agent dosage and initial water contents, as well as its durability under complex environmental conditions, were investigated via a series of mechanical and microstructural tests. The superior performance of GCP-solidified DS (SDS-G) in terms of strength and durability was demonstrated in comparison to solidified DS using ordinary Portland cement (SDS-O). The results indicated that the unconfined compressive strength (UCS) of SDS-G was approximately 3.0-4.5 times greater than that of SDS-O at the same dosage and curing ages, exhibiting a consistent increase in strength even beyond 28 days of curing. Additionally, the strength and deformation modulus (E50) of SDS-G increased initially and then decreased during wet-dry cycles, with reductions in mass, volume, and strength significantly were smaller than those observed in SDS-O. Furthermore, the reductions in UCS and E50 induced by freeze-thaw cycles were considerably smaller for SDS-G than for SDS-O, with strength losses of 50.7 % and 88.3 %, respectively, after 13 freeze-thaw cycles. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that the enhancements observed in SDS-G were attributed to the formation of ettringite (AFt), which effectively fills larger pores between agglomerated soil particles, thereby creating a denser and more stable microstructure in conjunction with hydrated calcium aluminosilicate (C- (A)-S-H) gels.