共检索到 13

The influence of seismic history on the liquefaction resistance of saturated sand is a complex process that remains incompletely understood. Large earthquakes often consist of foreshocks, mainshocks, and aftershocks with varying magnitudes and irregular time intervals. In this context, sandy soils undergo two interdependent processes: (i) partial excess pore water pressure (EPWP) generation during foreshocks or moderate mainshocks, where seismic loadings elevate EPWP without causing full liquefaction and (ii) incomplete EPWP dissipation between seismic events due to restricted drainage. These processes leave behind persistent residual EPWP, reducing the liquefaction resistance during subsequent shaking. A series of cyclic triaxial tests simulating these mechanisms revealed that liquefaction resistance increases when the EPWP ratio r(u) < 0.6-0.8 (peaking at r(u) similar to 0.4) but decreases sharply at higher r(u). Crucially, EPWP generation during seismic loading plays a dominant role in resistance evolution compared to reconsolidation effects. Threshold lines (TLs) mapping r(u), the reconsolidation ratio (RR), and peak resistance interval (the range of r(u) where the peak liquefaction resistance is located) indicates that resistance decreases above TLs and increases below them, with higher cyclic stress ratios (CSR) weakening these effects. These findings provide a unified framework for assessing liquefaction risks under realistic multi-stage seismic scenarios.

期刊论文 2025-09-01 DOI: 10.1016/j.soildyn.2025.109462 ISSN: 0267-7261

Soybean urease-induced calcium carbonate precipitation (SICP) is an innovative and eco-friendly approach with demonstrated potential for mitigating soil liquefaction. However, the specific impacts of the concentrations of soybean urease and salt solutions require further elucidation. The research examines how the two compositions influence calcium carbonate formation. Dynamic characteristics of one-cycle SICP-treated clean and silty sand were analyzed based on cyclic triaxial tests. It was revealed that SICP-treated specimens of both liquefied sand and silty sand exhibit reduced accumulation of excess pore pressure and diminished strain growth under cyclic loading, thereby delaying liquefaction failure. Although higher concentrations of both soybean urease and salt solution can enhance liquefaction resistance, salt solution concentration has a more pronounced effect on improving liquefaction resistance due to the more production of calcium carbonate. Scanning electron microscopy observations confirmed the presence of calcium carbonate crystals at the interfaces between sand particles and between sand and fine particles. These crystals effectively bond the loose sand and fine particles into a cohesive matrix, reinforcing soil structure. A direct linear correlation was established between the liquefaction resistance improvement and precipitated calcium carbonate content. Notably, the one-cycle SICP treatment method adopted in this study demonstrates a better biocementation effect compared to cement mortar or multi-cycle MICP-treated sand under the same content of cementitious materials. These findings provide valuable insights for optimizing SICP treatments, aiming to reduce the risk of soil liquefaction in potential field applications.

期刊论文 2025-08-01 DOI: 10.1016/j.soildyn.2025.109397 ISSN: 0267-7261

Stress-strain behavior of two different soil specimens subjected to cyclic compressive loading are studied herein, the goal being to present a simple dynamic uniaxial mem-modeling approach that aids physical insight and enables system identification. In this paper, mem stands for memory, i.e., hysteresis. Mem-models are hysteresis models transferred from electrical engineering using physical analogies. Connected in series, a mem-dashpot and mem-spring are employed to model inter-cycle strain ratcheting and intra-cycle gradual densification of the two soil specimens. Measured time histories of stress and strain are first decomposed so that the two modeling components, mem-dashpot and mem-spring, can be identified separately. This paper focuses on the mem-dashpot, a nonlinear generalization of a linear viscous damper. A mem-spring model is also devised built on an extended Masing model. Nonlinear dynamic simulations (with inertia) employing the identified mem-dashpot and mem-spring demonstrate how well the identified mem-models reproduce the measured early-time data (first 200 cycles of loading). Choices of state variables inherited from bond graph theory, the root of mem-models, are introduced, while MATLAB time integrators (i.e., ode solvers) are used throughout this study to explore a range of contrasting damper and spring models. Stiff solver and the state event location algorithm are employed to solve the equations of motion involving piecewise-defined restoring forces (when applicable). Computational details and results are relegated to the appendices. This is the first study to use single-degree-of-freedom (SDOF) system dynamic simulations to explore the consistency of mem-models identified from real-world data.

期刊论文 2025-05-01 DOI: 10.1007/s11071-024-10621-y ISSN: 0924-090X

Soil liquefaction caused by earthquakes is a devastating occurrence that can compromise the foundations of buildings and other structures, leading to considerable economic losses. Among the new remedies against liquefaction, Induced Partial Saturation (IPS) is regarded as one of the most promising technologies. In order to improve liquefaction resistance and the fluid phase's compressibility, gas or air bubbles are introduced into the pore water of sandy soils. This article deals with the general laboratory evaluation of a sand under partially saturated conditions and under cyclic loading to assess if this technology is applicable for a ground improvement of the examined soil. The use of the Axis Translation Technique for sample desaturation and diffusion-stable butyl membranes significantly influences the laboratory results. Additionally, it is found that the trapped air bubbles of the partially saturated samples act like a damping mechanism, which are reflected in the stress paths of the deviator stress q over the mean pressure p with an inclination of 1 : 3. Zum Verfl & uuml;ssigungsverhalten von teilges & auml;ttigtem SandDie durch Erdbeben verursachte Bodenverfl & uuml;ssigung ist ein verheerendes Ereignis, das die Fundamente von Geb & auml;uden und anderen Bauwerken gef & auml;hrden und zu erheblichen wirtschaftlichen Verlusten f & uuml;hren kann. Die induzierte partielle S & auml;ttigung (Induced Partial Saturation, IPS) gilt als eine der vielversprechendsten Technologien unter den neuartigen Baugrundverbesserungen gegen Verfl & uuml;ssigung. Um den Verfl & uuml;ssigungswiderstand und die Kompressibilit & auml;t der fl & uuml;ssigen Phase zu verbessern, werden dabei Gas- oder Luftblasen in das Porenwasser sandiger B & ouml;den eingebracht. Dieser Beitrag besch & auml;ftigt sich mit der generellen labortechnischen Evaluierung eines Sandes unter teilges & auml;ttigten Verh & auml;ltnissen und unter zyklischer Beanspruchung zur Beurteilung, inwiefern sich diese Baugrundverbesserung f & uuml;r den untersuchten Boden eignet. Die Verwendung der Axis Translation Technique zur Probenentw & auml;sserung und die Verwendung von diffusionsstabilen Butylmembranen haben einen erheblichen Einfluss auf die Laborergebnisse. Au ss erdem ist festzustellen, dass die eingeschlossenen Luftblasen der teilges & auml;ttigten Proben wie eine D & auml;mpfung wirken und sich in den Spannungspfaden der Deviatorspannung q & uuml;ber dem mittleren Druck p mit einer Neigung 1 : 3 widerspiegeln.

期刊论文 2025-03-01 DOI: 10.1002/gete.202400032 ISSN: 0172-6145

Subgrades may be subjected to intermittent cyclic loads such as traffic loads. Under these loading conditions, excess pore water pressure can accumulate in clayey soils during cyclic loading period and dissipate during resting time. The deformation behaviour of clayey soil after reconsolidation process may be different from that under consecutive cyclic loading. A series of undrained cyclic triaxial tests, including reconsolidation process between cyclic loading stages, were performed on kaolin clay. The axial strain accumulation, excess pore water pressure accumulation, deviatoric stress-strain loop and resilience modulus under different cyclic stress ratios, initial confining pressures and degrees of reconsolidation were discussed and presented. Test results show that the reconsolidation process has significant effects on the deformation characteristics of clayey soil. The coupling effects of change of void ratio and effective mean stress result in a non-monotonic relationship between normalised total axial strain and degree of reconsolidation. In addition, an increase in the degree of reconsolidation leads to an increase in the normalised excess pore water pressure increment during 2nd cyclic loading stage, regardless of cyclic stress ratio and initial confining pressure. Furthermore, the steady resilience modulus at the end of each cyclic loading stage depends on the effective cyclic stress ratio and initial confining pressure, irrespective of reconsolidation process.

期刊论文 2025-01-01 DOI: 10.1007/s11440-024-02399-5 ISSN: 1861-1125

The discrete element method (DEM) is used to simulate the behavior of a model sand under cyclic stress. Two approaches are employed in the contact model to account for the effect of anisotropic particle shape: (1) spheres with a rolling resistance moment and (2) clumps of spheres. Model parameters are calibrated using experimental results from drained monotonic triaxial tests on NE34 sand. Then, a series of cyclic triaxial tests is done on a homogeneous elementary volume sample with varying density index (ID\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_D$$\end{document}) and cyclic stress ratio (CSR). Both macroscopic and micromechanical characteristics of the material are examined under cyclic loads. In particular, the evolution of Young's modulus (E) and the damping ratio (D) with strain amplitude are evaluated at varying ID\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_D$$\end{document} and compared with values from the literature. An analysis of the coordination number (Z), orientation of strong and weak contact forces, friction mobilization, sliding contacts and fabric evolution links the observed macroscopic behavior of energy dissipation to the phenomenon of frictional sliding at the grain scale.

期刊论文 2024-11-01 DOI: 10.1007/s10035-024-01467-7 ISSN: 1434-5021

To satisfy the economic requirements and reduce the impact to the surrounding buildings and underground structures, the dynamic compaction (heavy tamping) and static compaction are combined used in the soil filling for airport subgrade. Despite compaction the subgrades in the same degree of compaction, the subgrades filled by dynamic and static compaction method show different increase potential in the permanent strain under cyclic loading, which then further result in the differential settlement and safety problems. This study firstly investigated the compaction characteristics under static compaction and different dynamic compaction scheme, during which the static and dynamic compaction strain and stress evolutions were monitored. The cyclic triaxial tests were then performed to investigate the sample preparation method derived difference in permanent strain under cyclic loading. Furthermore, to provide a microscopic interpretation to this difference, the pore size distributions of the silt samples based on mercury intrusion porosimetry (MIP) test and the internal particle contact stresses from discrete element method (DEM) simulation were respectively explored. The main conclusions are as follows: (1) The dynamic compaction processes can be divided into rapid and slow compaction strain stages determined by strain growth rate and compaction numbers, which further influences the homogeneity of soil samples; (2) The statically compacted samples have more significant permanent strain than the dynamic ones due to the localized stress concentration and different pore microstructures; the permanent strain increases with dynamic compaction energy until a stable stage is reached. (3) The MIP results show that the dynamic compaction transforms the macropores into mesopores; the higher compaction energy enhances this transforming effect but results in a decrease in the overall homogeneity.

期刊论文 2024-11-01 DOI: 10.1016/j.trgeo.2024.101378 ISSN: 2214-3912

In southwest China, red mudstone fill material (RMF) is widely used in constructing railway subgrades to substitute the conventional unbound granular materials (UGMs). Besides the strain-level dependent dynamic properties, RMF significantly depends on loading cycles. However, such an effect has yet to be incorporated into the current design method, which would lead to a considerable misprediction in dynamic responses of the RMF subgrade during the operation period. This paper presents a comprehensive study of long-term dynamic properties of RMF (a silty clay) over a range of water contents and cyclic stresses. The objective is to establish a normalization framework of dynamic properties that considers the effect of large numbers of cyclic loading. With this emphasis, 40 cyclic triaxial tests with 50000 loading cycles were conducted on RMF specimens compacted at various water contents. Two-stage behavior has been identified in equivalent Young's modulus and damping ratio evolutions. An exponential model is thus proposed to capture the two-stage pattern. The proposed normalization procedure showed a competent availability for the characterization of equivalent Young's modulus and damping ratio at different loading cycles. Soil fabric also played a decisive role in evaluating RMF's dynamic responses. Evidence of microfabric effect on the dynamic responses of RMF was strengthened by the Mercury intrusion porosimetry (MIP) and scanning electron microscope (SEM) analysis.

期刊论文 2024-10-25 DOI: 10.1016/j.conbuildmat.2024.138384 ISSN: 0950-0618

The resistance to liquefaction of soils can be significantly increased by slightly reducing the degree of saturation. Many experimental studies demonstrated that the augmented compressibility of the pore fluid mixture composed by entrapped bubbles within a continuous fluid phase reduces the amount of seismically induced excess pore water pressure. On the contrary, interpretation through constitutive models of the cyclic response of nearly saturated soils, often referred to as gassy soils, is by far less explored in the literature. This paper addresses this topic by considering the gas-water mixture as a homogeneous equivalent fluid whose compressibility has been used along with the elastoplastic constitutive model formulated by Dafalias and Manzari (2004). The model has been calibrated on the experimental data obtained from monotonic triaxial tests on saturated sandy soils and then validated with the results of cyclic triaxial tests on saturated and non-saturated liquefiable sandy soils. The selected calibration has been used to perform parametric analyses by varying the initial conditions of the soil (i.e., the relative density and degree of saturation), thus further emphasizing the beneficial effect of quasi-saturated fluid to delay the onset of liquefaction instabilities.

期刊论文 2024-07-01 DOI: 10.1007/s11440-023-02108-8 ISSN: 1861-1125

Earthquakes cause cyclic shear deformations in soil and build-up of excessive pore water pressure as a result of undrained loading, accompanied with rearrangement of soil particles and degradation in stiffness of the soil due to decrease in effective stresses. During loading, the onset of soil liquefaction is defined as a stress state in which the excess pore water pressure is equalized to the total stress. From this point of view, assessment of the pore water pressure development pattern under cyclic loading has been one of the most salient research topics in geotechnical and earthquake engineering. In this study, results of a series of cyclic triaxial tests on non -plastic silt specimens consolidated under 100 kPa effective isotropic consolidation pressure were used to question the modelling ability of pore pressure development models previously proposed for sands. Tests were performed on specimens of 6 different initial relative densities (D r ) ranging between 30-80% and 10 different cyclic stress ratios (CSR). The key parameters of pore water pressure development and shear deformation in the energy -based model used are relative density, cyclic stress ratio and number of cycles. The results revealed that, these energy -based models have a strong potential in evaluation of pore water pressure development pattern of non -plastic silts. Test results also show that the increase in relative density and decrease in CSR causes a ladderlike behavior among pore water pressure and cyclic shear strain, which is relevantly rendered by energy -based models.

期刊论文 2024-05-01 DOI: 10.18400/tjce.1283189 ISSN: 2822-6836
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页