Energy dissipation can macroscopically synthesize the evolutions in the microstructure of the marine clay during cyclic loading. Hence an energy-based method was employed to investigate the failure criterion and cyclic resistance of marine clay. A series of constant-volume cyclic direct simple shear tests was conducted on undisturbed saturated marine clay from the Yangtze Estuary considering the effects of the plasticity index (IP) and cyclic stress ratio (CSR). The results indicated that a threshold CSR (CSRth) exhibiting a power function relationship with IP exists in marine clay, which divides the cyclic response into non-failure and failure states. For failed specimens, the development of energy dissipation per cycle (Wi) with the number of cycles (N) exhibited an inflection point owing to the onset of serious damage to the soil structure. In this regard, the energy-based failure criterion was proposed by considering the inflection point as the failure point. Consequently, a model was proposed to quantify the relationships between failure energy dissipation per cycle (Wf) [or failure accumulative energy dissipation (Waf)], initial vertical effective stress, IP, and the number of cycles to failure (Nf,E). An evaluation model capturing the correlation among CSR, IP, and Nf,E was then established to predict the cyclic resistance, and its applicability was verified. Compared with the strain-based cyclic failure criterion, the energybased failure criterion provides a more robust and rational approach. Finally, a failure double-amplitude shear strain (gamma DA,f) evaluation method applicable to marine clay in different seas was presented for use in practical geotechnical engineering.
The amount of energy dissipated in the soil during cyclic loading controls the amount of pore pressure generated under that loading. Because of this, the normalized dissipated energy per unit volume is the basis for both pore pressure generation models and energy-based liquefaction analyses. The pattern of energy dissipation in the soil in load-controlled cyclic triaxial and load-controlled cyclic direct simple shear tests and displacement-controlled cyclic triaxial and displacement-controlled cyclic direct simple shear tests is quite different. As a result, the pattern of pore pressure generation associated with load-controlled tests is markedly different from that in displacement-controlled tests. Pore pressure generation patterns for each of the four test types were proposed based upon the manner in which the load was applied during the test and the soil's response to that loading. The results of four tests, two load controlled and two displacement controlled, were then used to verify these patterns. Pore pressure generation rates in load-controlled and displacement-controlled tests are different when plotted against their cycle ratios. Conversely, the tests produce nearly identical patterns when plotted against energy dissipation ratio. This occurs because of the relationship between energy dissipation ratio and pore pressure generation is independent of the loading pattern.