Nanoparticle contamination has been associated with adverse impacts on crop productivity. Thus, effective approaches are necessary to ameliorate NP-induced phytotoxicity. The present study aimed to investigate the efficacy of brassinosteroids and ethylene in regulating CuO NPs toxicity in rice seedlings. Therefore, we comprehensively evaluated the crosstalk of 24-Epibrassinolide and ethylene in regulating CuO NP-induced phytotoxicity at the physiological, cellular ultrastructural, and biochemical levels. The results of the study illustrated that exposure to CuO NPs at 450 mg/L displayed a significant decline in growth attributes and induced toxic effects in rice seedlings. Furthermore, the exogenous application of ethylene biosynthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) at 20 mu M with 450 mg/L of CuO NPs significantly enhanced the reactive oxygen species (ROS) accumulation that led to the stimulation of ultrastructural and stomatal damage and reduced antioxidant enzyme activities (CAT and APX) in rice tissues. On the contrary, it was noticed that 24-Epibrassinolide (BR) at 0.01 mu M improved plant biomass and growth, restored cellular ultrastructure, and enhanced antioxidant enzyme activities (CAT and APX) under exposure to 450 mg/L of CuO NPs. In addition, brassinosteroids reduced ROS accumulation and the toxic effects of 450 mg/L of CuO NPs on guard cells and the stomatal aperture of rice seedlings. Interestingly, when 0.01 mu M of brassinosteroids, 20 mu M of ACC, and 450 mg/L of CuO NPs were applied together, BRs and ethylene showed antagonistic crosstalk under CuO NP stress via partially reducing the ethylene-induced CuO NP toxicity on plant growth, cellular ultrastructure, stomatal aperture, and guard cell and antioxidant enzyme activities (CAT and APX) in rice seedlings. BR supplementation with ACC and CuO NPs notably diminished ACC-induced CuO NPs' toxic effects on all of the mentioned attributes in rice seedlings. This study uncovered the interesting crosstalk of two main phytohormones under CuO NPs stress, providing basic knowledge to improve crop yield and productivity in CuO NPs-contaminated areas.
Background: As a broad-spectrum tetracycline antibiotic, Oxytetracycline (OTC) was widely used in a variety of applications. But, the overuse of OTC had led to the detection of it in food, water and soil, which could present significance risk to human health and cause damage to ecosystem. It was of great significance to develop sensitive detection methods for OTC. Herein, an environmentally friendly photoelectrochemical (PEC) aptasensor was constructed for the sensitive detection of OTC based on CuO-induced BiOBr/Ag 2 S/PDA (Polydopamine) photocurrent polarity reversal. Results: BiOBr/Ag 2 S/PDA composites modified electrode not only produced stable initial anodic photocurrent but also provided attachment sites for the aptamer S1 of OTC by the strong adhesion of PDA. On the other hand, CuO loaded OTC aptamer S2 (Cu -S2) was got through Cu -S bonds. After the target OTC was identified on the electrode surface, CuO was introduced to the surface of ITO/BiOBr/Ag 2 S/PDA through the specific binding of OTC to S2. This identification process formed dual Z -type heterojunctions and resulted in a remarkable reversal of photocurrent polarity from anodic to cathodic. Under optimization conditions, the PEC aptasensor showed a wide linear range (50 fM - 100 nM), low detection limit (1.9 fM), excellent selectivity, stability and reproducibility for the detection of OTC. Moreover, it was successfully used for the analysis of OTC in real samples of tap water, milk and honey, and had the potential for practical application. Significance: This work developed an environmentally friendly photocurrent-polarity-switching PEC aptasensor with excellent selectivity, reproducibility, stability, low LOD and wide linear range for OTC detection. This sensitive system, which was including BiOBr, Ag 2 S, PDA and CuO were low toxicity, not only reduced the risk of traditional toxic semiconductors to operators and the environment, but can also be used for the detection of real samples, broadening the wider range of applications for BiOBr, Ag 2 S, PDA and CuO.
The widespread application of copper oxide nanoparticles (CuO NPs) in agricultural production has caused growing concerns about their impact on crops. In this study, wheat root elongation was used to evaluate the toxic effect concentrations of CuO NPs in two soils with differing properties, collected from farmlands in Guangdong (GD) and Shandong (SD) provinces, China. Plant morphological and biochemical properties were also assessed to explore the toxicity mechanism of CuO NPs on wheat seedlings. The root elongation results revealed lower toxic effect concentration values in the plants grown in GD soil than in SD soil. Furthermore, the treatment with CuO NPs at 200 mg Cu kg-1 significantly reduced wheat root and shoot biomass by 35.8% and 15.8%, respectively, in GD soil. Electron microscopy showed that CuO NPs deformed wheat roots and entered leaf cells, causing deformation and damaging the cell structure. The CuO NP treatments also decreased chlorophyll content, increased antioxidant enzyme activity, and increased membrane lipid peroxidation in wheat leaves. The addition of CuO NPs significantly reduced the Zn (by 17.3%) and Fe (by 26.9%) contents in the leaves of plants grown in GD and SD soils, respectively. However, the contents of Cu, Mg, and Mn were increased by 27.4%-52.5% in GD soil and by 17.9%-71.6% in SD soil. These results suggested that CuO NPs showed greater toxicity to wheat plants grown in acidic soil than in alkaline soil and that the adverse effects of CuO NP treatments on wheat seedlings were due to a combination of CuO NPs and released Cu2+.