The cracking during the drying process of thickened tailings stack is a critical issue impacting its stability. This study establishes a comprehensive analytical framework that encompasses both mechanism cognition and technical methodologies by systematically integrating multidimensional research findings. Research indicates that cracking results from the coupling effects of environmental parameters and process conditions. The environmental chamber, with its precise control over external conditions, has emerged as essential experimental equipment for simulating actual working environments. From a mechanical perspective, water evaporation induces volume shrinkage, leading to microcrack formation when local tensile stress surpasses the matrix's tensile strength, ultimately resulting in a network of interconnected cracks. This process is governed by the dual parameters of matric suction and tensile strength. In terms of theoretical modeling, the fracture mechanics model analyzes crack propagation laws from an energy dissipation standpoint, while the stress path analysis model emphasizes the consolidation shrinkage coupling effect. The tensile damage model is particularly advantageous for engineering practice due to its parameter measurability. In numerical simulation technology, the finite element method is constrained by the predetermined crack path, whereas the discrete element method can dynamically reconstruct the crack evolution process but encounters the technical challenge of large-scale multi-field coupling calculations. Research suggests that future efforts should focus on optimizing theoretical prediction models that account for the characteristics and cracking behavior of tailings materials. Additionally, it is essential to develop a comprehensive equipment system that integrates real-time monitoring, intelligent regulation, and data analysis. This paper innovatively proposes the establishment of a multi-scale collaborative research paradigm that integrates indoor testing, numerical simulation, and on-site monitoring. By employing data fusion technology, it aims to enhance the accuracy of crack predictions and provide both theoretical support and technical guarantees for the safety prevention and control of thickened tailings stacks throughout their entire life cycle.
Unconventional resources (oil, gas, and geothermal) are often buried deep underground within dense rock strata and complex geological structures, making it increasingly difficult to create volumetric fractures through conventional hydraulic fracturing. This paper introduces a novel method of supercritical energetic fluid thermal shock fracturing. It pioneers a CO2 deflagration impact triaxial pneumatic fracturing experimental system, using high-strength similar materials to simulate deep, hard rock masses. The study investigates the rock-breaking process and crack propagation patterns under supercritical CO2 thermal shock, revealing and discussing the types of thermal shock-induced fractures, their formation conditions, and discrimination criteria. The research indicates that higher supercritical CO2 thermal shock pressures and faster pressure release rates facilitate the formation of radial branching fractures, circumferential cracks, and branch cracks. Typically, CO2 thermal shock generates 3-5 radial main cracks, which is significantly more than the single main crack formed by hydraulic fracturing. The formation of branched cracks is often caused by compression-shear failure and occurs under relatively harsh conditions, determined by the confining pressure, rock properties, peak thermal shock pressure, and the pressure sustained post-decompression. The findings are expected to offer a safe, efficient, and controllable shockwave method of supercritical fluid thermal shock fracturing for the exploitation of deep unconventional oil and gas resources. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Expansive soil is a special soil type that undergoes volume expansion during hygroscopicity and volume contraction during dehumidification. In this study, the effects of rainfall-evaporation cycles on the microscopic pores and cracks of expansive soils under different rainfall intensities were analyzed by simulating light rainfall, medium rainfall, and high-temperature drought environments using nuclear magnetic resonance (NMR) technology and image processing methods. The results showed that the micropores and small medium pores of the expanded soil gradually evolved into macropores during the cycling process, especially under stronger rainfall conditions. In addition, as the number of cycles increased, the expanded soil showed irrecoverable pore changes, which ultimately led to the scattering damage of the soil. By processing the surface crack images of expansive soils, the process of crack development was categorized into four stages, and it was found that the evaporation cycle of medium rainfall intensity caused the main cracks of expansive soils to develop more rapidly. A quantitative relationship model between the average crack width and the number of cycles as well as porosity was constructed, and the regression coefficient of determination R2 reached 0.98, 0.96, and 0.84, respectively. This study simulates the effects of real rainfall conditions on expansive soils and investigates the mechanism and evolution of cracks in expansive soils, which is of great theoretical and practical significance.