A critical investigation of three constitutive models for clay by means of analyses of a sophisticated laboratory testing program and of centrifuge tests on monopiles in clay subjected to (cyclic) lateral loading is presented. Constitutive models of varying complexity, namely the basic Modified Cam Clay model, the hypoplastic model with Intergranular Strain (known as Clay hypoplasticity model) and the more recently proposed anisotropic visco-ISA model, are considered. From the simulations of the centrifuge tests with monotonic loading it is concluded that all three constitutive models give satisfactory results if a proper calibration of constitutive model parameters and proper initialisation of state variables is ensured. In the case of cyclic loading, the AVISA model is found to perform superior to the hypoplastic model with Intergranular Strain.
This paper employed PFC3D and FLAC3D to conduct a three-dimensional discrete-continuous dual-scale coupled simulation and stability analysis of cohesive soil slope through discrete-continuous coupled algorithm and the gravity increase method. In the discrete element model zone, the progressive failure process of cohesive soil slope was studied by setting particles with different displacements to different colours, the evolutions of porosity and coordination number in the shear, sliding and stability zones of slope were analysed by arranging measurement spheres, and the variation law of particle position was obtained by the vertical layering of the soil. In the continuous model zone of coupled slope model, the horizontal and vertical stresses were verified with those of a pure FLAC3D model of slope. Furthermore, a comparative instability analysis of cohesive soil slope and gravelly soil slope was also performed. The safety factor for the cohesive soil slope in this work was determined to be 1.7 according to the mesoscopic fabric evolution of slope particles and the gravity increase method. The work in this paper broadens the application scope of the dual-scale coupled algorithm, highlights the differences in the mesoscopic instability mechanism between cohesive soil slop and gravelly soil slop, and provides new theoretical support for slope design and risk assessment in engineering practice.
To address the challenges of manually excavating deep-rooted medicinal herbs in the cold and arid regions of northwest China, such as low efficiency, high costs, and difficulties with mechanized methods, a self-propelled fork-tooth digger was developed for use in hilly and mountainous terrains. Key components, including the fork-tooth excavation device, hydraulic control system, and reverse trapezoidal crawler chassis, were designed and analyzed. A multi-body dynamics model (MBD) and discrete element model (DEM) for Astragalus and soil were developed, employing a DEM-MBD coupling method to simulate the harvesting process. Field trials demonstrated an excavation efficiency of 98.2%, a stem damage rate of 1.8%, a loss rate of 3.0%, and a maximum digging depth of 600 mm, all meeting existing industry standards. The results confirmed the design's effectiveness in meeting the mechanization needs for harvesting rhizome medicinal herbs.
Microbially induced carbonate precipitation (MICP) utilizing a urease active bioslurry is an ecofriendly method that can improve soil strength. However, the micromechanisms, such as ion diffusion, production rate of CaCO3, porosity, and permeability of pile reinforced by bioslurry, require further investigation. In this study, both biopile model tests and a coupled fluid-flow, solute transport and biochemical reactive model were conducted to analyze the mechanical property and biocementation mechanism of pile formed by urease active bioslurry. Results showed that the simulated CaCO3 content along the biopile length after 120 h grouting was close to test results. The UCS of the biopile decreased from 3.44 MPa to 0.88 MPa and the CaCO3 content decreased from 13.5% to 9.1% with increasing depth. The largest reduction in CaCO3 content was observed in the middle part of the biopile as the CaCO3 crystals in the upper part hindered the downward transport of the cementation solution. The morphology of CaCO3 crystals was influenced by cementation solution concentration, as evidenced by the predominance of spherical vaterite crystals in the upper part of the biopile and rhomboidal calcite crystals in the middle and lower parts. During the grouting process, the concentration of calcium ions and urea decreased, while the ammonium ion levels increased with depth due to the utilization of calcium ions and urea for CaCO3 precipitation and ammonium ion production. The production rate of CaCO3 first increased rapidly to reach a peak value and then decreased. The porosity and permeability demonstrated both linear and nonlinear decreasing trends as the CaCO3 concentration increased. The largest reduction in porosity and permeability, reaching 20% and 58% in the biopile top.
In response to the significant challenge posed by the trade-off between the efficiency of separating potato soil and minimizing potato peel damage in the 4SW-170 potato excavator, this study focused on enhancing the design of the swing separation sieve. The objective was to develop a novel separation sieve comprising three distinct orders of sieve surfaces. Building upon this foundation, the EDEM-Adams coupled simulation method was employed to explore the fragmentation and separation attributes of potato-soil aggregates. This investigation aimed to elucidate the behavior of potato-soil aggregates within the operational scope of the novel swing separation sieve. Subsequently, the optimized parameters were validated through field tests. The findings indicate a direct correlation between the fracture ratio of the cohesive bond and the crank speed, illustrating an increase in the former with higher crank speeds. Conversely, an inverse relationship exists between the fracture ratio and the sieve inclination angle, demonstrating a decrease in the ratio as the sieve inclination increases. At a machine speed of 1.9 km/h, the fracture ratio of the cohesive bond attains its peak value. The force exerted on potatoes at their maximum point escalates with rising crank speed but diminishes with increasing machine speed. Conversely, the effect of sieve inclination on the peak force applied to the potatoes is deemed inconsequential. The most effective parameter configuration for the separation sieve comprises a crank speed of 180 revolutions per minute (r/min), a machine speed of 1.9 km per hour (km/h), and a sieve inclination of 14.4 degrees. Field trials have confirmed that the parameter combination yielded a potato detection rate of 98.01% and a mere 0.68% rate of potato skin breakage, meeting the stipulated technical specifications of the potato harvester.