共检索到 2

The cement-stabilization technique is employed on natural and recycled granular materials to improve their mechanical properties. The strength of these materials is assessed by the unconfined compressive strength on laboratory compacted specimens, typically after 7 days of curing. Standards and technical specifications specify different values of specimen height and diameter and different loading modes of testing. This makes the comparison between different materials and with the acceptance limits of technical specifications difficult. The research investigates the effect of specimen size and loading mode on the unconfined compressive strength of both natural and recycled cement-stabilized granular materials. The results revealed significant differences in strength due to variations in specimen size and loading mode. As expected, an increase in specimen slenderness resulted in a decrease in compressive strength. A linear regression model was developed to quantify the effect of the experimental variables on the compressive strength of the two cement-stabilized materials.

期刊论文 2025-06-03 DOI: 10.1080/14680629.2024.2412779 ISSN: 1468-0629

The use of ordinary Portland cement for the stabilisation of granular materials in road construction undermines the effort on sustainability made by using recycled aggregate in substitution of natural ones. This requires the use of low-impact binders so that the road construction industry complies with the prevailing environmental regulations. This study compares the mechanical and environmental properties of construction and demolition waste (CDW) aggregates stabilised with different binders: (i) a Portland-limestone cement as a reference, (ii) a pozzolanic cement, (iii) an experimental pozzolanic cement containing waste clay from the lightweight aggregate production, and (iv) a binder with alkali-activated CDW fines. In the laboratory experiments, both strength and resilient properties were considered, while the environmental impact was assessed in a cradle-to-gate scenario through a life cycle analysis (LCA). The stabilised mixture with pozzolanic cement achieved comparable strength and stiffness while exhibiting a lower environmental impact than the mixture containing Portland-limestone cement. The addition of waste clay to the pozzolanic cement significantly reduces its environmental impact albeit more binder is required to compensate for the lower mechanical properties. The alkaline activation of the fine particles in the CDW aggregate enabled the creation of a stabilised mixture with high strengths and resilient modulus. However, this alternative stabilisation technique requires further optimisation to mitigate the significant environmental impact. The engineering evaluations of the stabilised granular mixtures studied have considered both mechanical and environmental factors intending to contribute to the scientific debate on how to make roadworks sustainable and conserve natural resources.

期刊论文 2025-04-11 DOI: 10.1016/j.conbuildmat.2025.140705 ISSN: 0950-0618
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页