共检索到 2

Mortars will remain critical in future land wars due to their flexibility and versatility. When mortars are fired continuously, the contact soil is gradually compacted by the mortar base plate, and dynamic research into this process is the basis for innovative mortar design. However, the discontinuity and nonlinearity of soil contact absolutely necessitate the constitutive relationship of soil contact, which is difficult to study. Therefore, this study conducted experimental research and theoretical derivation to establish an accurate dynamic model of the mortar system. First, based on the nonlinear elastic-plastic theory and the stress-strain relationship of soil under cyclic loading, a theoretical analysis method for the constitutive relationship of contact soil under continuous loading was proposed. Second, an experimental and testing system was designed to simulate launch loads, and the stress-strain response of soil under continuous impact loads was obtained experimentally. Subsequently, based on theoretical analysis and experimental data, the stress-strain relationship during the gradual compaction of soil was established using the least squares method. Finally, a constitutive relationship model of the contact soil in the mortar system was established in ABAQUS using the VUMAT subroutine interface, and the calculated results were compared and analyzed with traditional calculation results. The results indicated that studying the constitutive relationship of mortar in contact with soil during continuous firing using this method can improve the accuracy of dynamically modeling mortar systems. Moreover, this study has practical value in the engineering design of mortar systems.

期刊论文 2024-10-06 DOI: 10.1038/s41598-024-74169-y ISSN: 2045-2322

Due to their advantages of high rupture strength and long service life, polymer fibers are often used for soil improvement. However, there is no consensus on how the mixing of discrete polymer fibers affects the stress-strain relationship of clays. In this study, a constitutive relationship of polymer fiber-reinforced clay was established on the basis of the stress-strain relationship between clay and polymer fibers. The elastic-plastic unified hardening (UH) model was employed, and the fiber contribution was introduced based on the UH model. The constitutive relationship of polymer fiber-reinforced clay considers the anisotropic distribution of the discrete fiber orientation and the relative sliding between the fibers and clay matrix. The model was verified by referring to the results of consolidated undrained (CU) and consolidated drained tests of typical polymer fiber-reinforced clays in previous studies. A series of CU tests on rubber fiber-reinforced clay were conducted to validate the model further. The ratio of the simulated results to the experimental results gradually approached 1 with increasing axial strain. The constitutive relationship of polymer fiber-reinforced clay could provide satisfactory results. Polymer fiber mixing increases soil strength and enhances the properties of problematic soils, which makes the problematic soils more valuable for engineering applications. Studies have shown that the fibers in the soil tend to be distributed horizontally after the compaction process. With the anisotropic distribution of fiber orientation considered, the authors established a numerical calculation method for the stress-strain relationship of polymer fiber-reinforced clay. A major objective of this work was to allow the use of computerized numerical analysis methods when performing mechanical analyses of polymer fiber-reinforced clay, which avoids the need to conduct a large number of shear tests. In this study, a series of consolidated undrained tests of rubber fiber-reinforced expansive clay were conducted. With the data collected, the numerical calculation method for the stress-strain relationship of polymer fiber-reinforced clay was verified, and the numerical results agreed with the test results better.

期刊论文 2024-10-01 DOI: 10.1061/IJGNAI.GMENG-9712 ISSN: 1532-3641
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页