共检索到 5

This paper presents a general method for defining the macroscopic free-energy density function and its complementary forms for a porous medium saturated by two non-miscible fluids, in the case of compressible fluid and solid constituents, non-isothermal conditions and negligible interfacial surface energy. The major advantage of the proposed approach is that no limitation or simplification is posed on the choice of the free energies of the fluid constituents. As a result, a fully non-linear equation of state for the pore fluids can be incorporated within the proposed framework. The method is presented under the assumption that interfacial surface energy terms are negligible, thus recovering a Bishop parameter chi coinciding with the degree of saturation, which is expected to be applicable mostly to non-plastic soils. Moreover, small strains of the solid skeleton are assumed, but the method can be easily extended to a large strain formulation as discussed below. The paper analyzes also some particular cases concerning the incompressibility of all constituents, the geometric linearization and the incompressibility only of the solid constituent. The knowledge of the free energy density function is the starting point for the evaluation of the dissipation function, of energy and entropy balance and, in general, for the formulation of thermodynamically consistent constitutive models.

期刊论文 2025-03-01 DOI: 10.1016/j.gete.2024.100624 ISSN: 2352-3808

Purpose: Biochar is a carbon rich material that showed positive outcomes on plant growth and productivity enduring abiotic stresses. The objective of the present investigation is thus to determine the potential of biochar to mitigate the detrimental impacts of salinity in Lepidium sativum. Method: Salinity stress was induced by NaC1 at different concentrations ranging from 0 to 5000 mg/L. Biochar was applied in two concentrations: 0.5 and 1%. For biochar preparation, dry rice straw was heated at 400 OC at certain pyrolysis conditions. Results: The study established that salt medium significantly reduced seed germination and amylase activity, with the highest decrease of 63 and 50.6%, respectively, at 5000 mg/L. The relative permeability of the cell membrane was associated with substantial increases in lipid peroxidation and hydrogen peroxide. The free radicle scavengers' total phenolic, flavonoid, and proline levels were also induced. The use of prepared biochar at 0.5 and 1% reduced the damaging effects of salt stress by enhancing the activity of the alpha-amylase enzyme, resulting in a significant rise in germination (95% at 5000 mg/L by 0.5% of biochar). In contrast, the application of 0.5% biochar at 5000 mg/L significantly decreased MDA and hydrogen peroxide concentrations to 24.4 mg/g f wt and 1.39 mM/g d wt, respectively, compared to 48.21 and 1.77 in the control. Positive relationships between the multiple data revealed the largest augmentation of germination, dry weight, and antioxidant chemicals in stressed seedlings with 0.5% biochar. Biochar alleviated the hazardous effects of NaCl on L. sativum by decreasing free radicle formation and lipid peroxidation, thereby enhancing germination and early growth. Conclusion: The positive impact of biochar on salt stressed seedlings may underline its potential to have opposing NaCl consequences on development and sustain growth.

期刊论文 2025-01-01 DOI: 10.57647/ijrowa-40f8-5n63 ISSN: 2195-3228

Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 +/- 0.37 m(2) g(-1)) than WSOC in the alpine river runoff (0.41 +/- 0.26 m(2) g(-1)). Ionic composition was dominated by SO42-, NO3-, and NH4+ (average: 45.13 +/- 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.

期刊论文 2020-04-01 DOI: http://dx.doi.org/10.1016/j.envpol.2022.119093 ISSN: 0269-7491

In-Situ Resource Utilization (ISRU) is a key NASA initiative to exploit resources at the site of planetary exploration for mission-critical consumables, propellants, and other supplies. The Resource Prospector mission, part of ISRU, is scheduled to launch in 2020 and will include a rover and lander hosting the Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) payload for extracting and analyzing lunar resources, particularly low molecular weight volatiles for fuel, air, and water. RESOLVE contains the Lunar Advanced Volatile Analysis (LAVA) subsystem with a Gas Chromatograph-Mass Spectrometer (GC-MS). RESOLVE subsystems, including the RP'15 rover and LAVA, are in NASA's Engineering Test Unit (ETU) phase to assure that all vital components of the payload are space-flight rated and will perform as expected during the mission. Integration and testing of LAVA mass spectrometry verified reproducibility and accuracy of the candidate MS for detecting nitrogen, oxygen, and carbon dioxide. The RP'15 testing comprised volatile analysis of water-doped simulant regolith to enhance integration of the RESOLVE payload with the rover. Multiple tests show the efficacy of the GC to detect 2% and 5% water-doped samples.

期刊论文 2016-01-01 DOI: 10.1117/12.2239346 ISSN: 0277-786X

The volatile constituents of Blue Moon' and Blue Perfume' rose flowers, which, on an olfactory basis, are classified as a blue type' were analysed using Aromascope (R) technology (modified headspace technology) and solvent extraction methods followed by gas chromatographymass spectrometry analysis. One hundred and eighty components were identified in the headspace volatile components of Blue Moon' flower and 188 components were identified in solvent extracts. Among them, geraniol, nerol, citronellol, 1,3-dimethoxy-5-methylbenzene and dihydro--ionol were identified as the main odour components. On the other hand, in Blue Perfume', 165 components were identified in the headspace volatile components and 150 components were identified in solvent extracts. Among them, geraniol, nerol, citronellol, neral, and geranial were identified as the major odour compounds. From both rose flowers, three components were newly identified: 2-isopropyl-4-methylthiazole, (Z)-cyclododec-9-enolide (yuzu lactone), and methyl cis-(Z)-jasmonate. 2-Isopropyl-4-methylthiazole and methyl cis-(Z)-jasmonate were identified in both of the headspace components and solvent extracts of the two types of rose flower, and then yuzu lactone was identified only in solvent extracts as the one of the minor components. Several components identified in both flowers have asymmetric carbon atoms in their molecules, leading us to analyse their chirality. For the first time, the enantiomer ratios of linalool, (E)-nerolidol, theaspiranes and dihydro--ionol could be assigned by multi-dimensional gas chromatographymass spectrometry. The results were as follows in both rose flowers. The ratio of the (S)-enantiomer vs. the (R)-enantiomer of linalool was 8:92. Only the (S)-enantiomer was detected for (E)-nerolidol and dihydro--ionol. The ratios of the (2R,5R)-enantiomer vs. the (2S,5S)-enantiomer in theaspirane A and the (2R,5S)-enantiomer vs. the (2S,5R)-enantiomer in theaspirane B were about 4:96. Copyright (c) 2013 John Wiley & Sons, Ltd.

期刊论文 2013-05-01 DOI: 10.1002/ffj.3153 ISSN: 0882-5734
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页