The shear strength of compacted bentonite is crucial for preventing tilting and damage of the waste canisters in deep geological repositories (DGRs). The shear strength evolution along the confined wetting path also needs to be investigated, given the long saturation time of the bentonite buffer. This study conducted direct shear tests on densely compacted Gaomiaozi bentonite after suction control under confined conditions to determine its peak shear strength and strength parameters. Furthermore, the shear strength evolution along the confined wetting path was modeled on the basis of the effective stress principle. The results show that, for a given dry density, the peak shear strength at a given vertical pressure and the strength parameters exhibit an overall decrease along the confined wetting path. Moreover, the peak shear strength of the specimen that underwent confined wetting was considerably lower than that of the as-compacted specimen with the same total suction, indicating that the suction value and microstructure codetermine the peak shear strength of compacted Gaomiaozi bentonite. For this reason, the peak shear strength in the as-compacted state and the dual-porosity water retention curves established along the confined wetting path were used to model the shear strength evolution along the confined wetting path. The substitution equation for the effective stress parameter chi was selected on the basis of the experimental evidence. Finally, the model parameters were calibrated from the shear strength evolution at a given vertical pressure, and they reasonably reproduced the shear strength evolution under other vertical pressures. These findings can be helpful for the design and safe operation of DGRs under extreme geological conditions.
Development of the constitutive model for bentonite under coupled thermo-hydro-mechanical (THM) condition is of great significance for the construction and safety assessment of deep geological disposal repositories for high-level radioactive waste. In this work, a new temperature-suction-mean net stress ( T-s-p ) space with the conception of critical saturated state (CSS) surface was defined to represent the actual stress state of bentonite under coupled THM condition. Then, based on the CSS surface, a THM constitutive model was proposed for describing the volumetric behavior of compacted bentonite. Under the THM model framework, two bounding surfaces were proposed to describe the elastoplastic volume changes induced by mechanical response of skeleton and hydration of montmorillonite, respectively. The model responses upon some typical THM paths were simulated and discussed to reveal the performance of the proposed constitutive model for bentonite. Finally, the proposed model was validated by simulating by several volume change tests carried out on different bentonites. The results confirmed that the proposed model shows more advantages in describing the THM volumetric behavior.
Investigation of thermal effects on the strain rate-dependent properties of compacted bentonite is crucial for the long-term safety assessment of deep geological repository for disposal of high-level radioactive waste. In the present work, cylindrical GMZ01 bentonite specimens were compacted with suctioncontrolled by the vapor equilibrium technique. Then, a series of temperature- and suction-controlled stepwise constant rate of strain (CRS) tests was performed and the rate-dependent compressibility behavior of the highly compacted GMZ01 bentonite was investigated. The plastic compressibility parameter l, the elastic compressibility parameter k, the yield stress p0, as well as the viscous parameter a were determined. Results indicate that l, k and a decrease and p0 increases as suction increases. Upon heating, parameters l, a and p0 decrease. It is also found that p0 increases linearly with increasing CRS in a double-logarithm coordinate. Based on the experimental results, a viscosity parameter a(s, T) was fitted to capture the effects of suction s and temperature Ton the relationship between yield stress and strain rate. Then, an elastic-thermo-viscoplastic model for unsaturated soils was developed to describe the thermal effects on the rate-dependent behavior of highly compacted GMZ01 bentonite. Validation showed that the calculated results agreed well to the measured ones. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).
Understanding the shrinkage behavior of bentonite considering physicochemical effects is important to assess the efficiency of buffer barriers in environmental geotechnical engineering. In this paper, shrinkage experiments were conducted on Na-bentonite specimens prepared with salt solutions at various concentrations. NMR and SEM tests were conducted to study the moisture distribution and structural evolution of specimens during the evaporation of water. After sample saturation, the porosity decreases as the pore water salinity increases due to the decreasing swelling deformation with pore water concentration during the saturation process. During drying, the shrinkage deformation of compacted bentonite is anisotropic, with larger axial strains than radial strains. At the fully dried state, the bentonite specimen prepared with distilled water is the densest due to the least crystalline salts in the specimen. At the microscale, as pore water salinity increases, pore water is distributed to smaller pores, and the microstructure is more aggregated. The saline effect on water retention and distribution is weakened as pore water evaporates, originating from physicochemical effects. The structure is also more aggregated after evaporation of pore water. Theoretically, the shrinkage behavior of Na-bentonite considering the influence of water salinity is well described from the perspective of an effective stress-based constitutive relationship.