The mechanical properties and failure characteristics of soil-rock mixtures (SRMs) directly affect the stability of tunnels constructed in SRMs. A new SRM modelling method based on the combined finite-discrete element method (FDEM) was proposed. Using this new SRM modelling method based on the FDEM, the mechanical characteristics and failure behaviour of SRM samples under uniaxial compression, as well as the failure mechanism of SRMs around a tunnel, were further investigated. The study results support the following findings: (1) The modelling of SRM samples can be achieved using a heterogeneous rock modelling method based on the Weibull distribution. By adjusting the relevant parameters, such as the soil-rock boundaries, element sizes and modelling control points, SRM models with different rock contents and morphologies can be obtained. (2) The simulation results of uniaxial compression tests of SRM samples with different element sizes and morphologies validate the reliability and robustness of the new modelling method. In addition, with increasing rock content, VBP (volumetric block proportion), the uniaxial compressive strength and Young's modulus increase exponentially, but the samples all undergo single shear failure within the soil or along the soil-rock interfaces, and the shear failure angles are all close to the theoretical values. (3) Tunnels in SRMs with different rock contents all exhibit X-shaped conjugate shear failure, but the fracture network propagation depth, the maximum displacement around the tunnel, and the failure degree of the tunnel in the SRM roughly decreases via a power function as the rock content increases. In addition, as the rock content increases, such as when VBP = 40%, large rocks have a significant blocking effect on fracture propagation, resulting in an asymmetric fracture network around the tunnel. (4) The comparisons of uniaxial compression and tunnel excavation simulation results with previous theoretical results, laboratory test results, and numerical simulation results verify the correctness of the new modelling method proposed in this paper.
Purpose - The purpose of this paper is to propose a new combined finite-discrete element method (FDEM) to analyze the mechanical properties, failure behavior and slope stability of soil rock mixtures (SRM), in which the rocks within the SRM model have shape randomness, size randomness and spatial distribution randomness. Design/methodology/approach - Based on the modeling method of heterogeneous rocks, the SRM numerical model can be built and by adjusting the boundary between soil and rock, an SRM numerical model with any rock content can be obtained. The reliability and robustness of the new modeling method can be verified by uniaxial compression simulation. In addition, this paper investigates the effects of rock topology, rock content, slope height and slope inclination on the stability of SRM slopes. Findings - Investigations of the influences of rock content, slope height and slope inclination of SRM slopes showed that the slope height had little effect on the failure mode. The influences of rock content and slope inclination on the slope failure mode were significant. With increasing rock content and slope dip angle, SRM slopes gradually transitioned from a single shear failure mode to a multi-shear fracture failure mode, and shear fractures showed irregular and bifurcated characteristics in which the cut-off values of rock content and slope inclination were 20% and 80 degrees, respectively. Originality/value - This paper proposed a new modeling method for SRMs based on FDEM, with rocks having random shapes, sizes and spatial distributions.
The shear mechanical behavior is regarded as an essential factor affecting the stability of the surrounding rocks in underground engineering. The shear strength and failure mechanisms of layered rock are significantly affected by the foliation angles. Direct shear tests were conducted on cubic slate samples with foliation angles of 0 degrees, 30 degrees, 45 degrees, 60 degrees, and 90 degrees. The effect of foliation angles on failure patterns, acoustic emission (AE) characteristics, and shear strength parameters was analyzed. Based on AE characteristics, the slate failure process could be divided into four stages: quiet period, step-like increasing period, dramatic increasing period, and remission period. A new empirical expression of cohesion for layered rock was proposed, which was compared with linear and sinusoidal cohesion expressions based on the results made by this paper and previous experiments. The comparative analysis demonstrated that the new expression has better prediction ability than other expressions. The proposed empirical equation was used for direct shear simulations with the combined finite-discrete element method (FDEM), and it was found to align well with the experimental results. Considering both computational efficiency and accuracy, it was recommended to use a shear rate of 0.01 m/s for FDEM to carry out direct shear simulations. To balance the relationship between the number of elements and the simulation results in the direct shear simulations, the recommended element size is 1 mm. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).