共检索到 2

This study investigates the effects of thermal treatment on the mechanical behavior of highly compressible Pak Phanang clay, a soft soil with low strength that typically requires advanced ground improvement methods. Heating is considered a promising technique for enhancing foundation stability, particularly for critical infrastructure. The research focuses on the thermo-mechanical behavior of the clay, emphasizing consolidation and solidification processes that influence load-bearing capacity. Isotropically consolidated undrained triaxial tests were conducted at temperatures of 30 degrees C, 40 degrees C, 50 degrees C, and 60 degrees C with over-consolidation ratios (OCR) of 1, 2, 4, and 8. The results showed that increasing temperature significantly enhanced both peak deviator stress (qu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q}_{u}$$\end{document}) and the secant Young's modulus (E50\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{50}$$\end{document}), with a strong linear correlation: E50=108.70xqu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${E}_{50}=108.70\times {q}_{u}$$\end{document}. Dry density increased and organic matter content slightly decreased under thermal treatment, particularly in normally consolidated clay. Excess pore water pressure (EPWP) increased linearly with temperature across all OCR values. Consolidation volume change also increased with temperature but decreased as OCR rose. The coefficient of consolidation (Cv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}_{v}$$\end{document}) improved with temperature, leading to faster consolidation, especially in normally consolidated specimens. The coefficient of permeability (k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}) increased with temperature but declined with higher OCR, with k rising by 14.6%-24.2% from 30 degrees C to 60 degrees C in normally consolidated samples. Predictive models for qu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${q}_{u}$$\end{document} and k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} based on temperature and OCR demonstrated high accuracy. Overall, the findings provide a reliable understanding of the thermal-mechanical response of this clay type, supporting its application in temperature-assisted ground improvement.

期刊论文 2025-06-01 DOI: 10.1007/s10706-025-03144-9 ISSN: 0960-3182

This study investigates effects of grass on hydro-thermal-mechanical properties and shallow stability of unsaturated soil slope. A field measurement consisted of two cut slopes, namely bare slope and grassed slope, was carried out. Field measurement results show that grass has effects on reducing the volumetric water content and increasing matric suction. There is a greater gap in matric suction between grassed soil slope and bare soil slope when the snow appears. Besides, the soil temperature in grassed slope is lower than bare slope in warm seasons. However, contrasted result of the soil temperature is recorded in winter. The triaxial tests were conducted for studying mechanical properties of grassed saturated soil with different grass ages. Experimental results reveal that there is an increase in peak shear strength and effective cohesion of grassed soil as the grass age increases, whereas a slightly higher effective angle of internal friction is observed. Furthermore, the volumetric strain decreased with the rise in grass root volume ratio. The approach of coupled nonisothermal-seepage numerical analysis for unsaturated soil slope considering impacts of grass is suggested. It is followed by slope stability analysis considering enhanced shear strength of soil due to grass roots. The good agreement regarding soil temperature and volumetric water content between simulation and field measurement indicates that the proposed approach is feasible to consider the influences of grass on the hydro-thermal behaviors of unsaturated soil slope. Furthermore, the higher values of factor of safety (FOS) of grassed slope present that the grass is effective in resisting the shallow landslide-prone area.

期刊论文 2024-01-01 DOI: 10.1007/s10064-023-03459-y ISSN: 1435-9529
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页