共检索到 1

Currently, studies on the permeability evolution characteristics of overlying aquiclude protective layers caused by coal mining focus on single lithological protective layers and assume the permeability coefficient remains constant. However, these studies fail to consider the variation characteristics of the combination protective layer structure and permeability coefficient. Therefore, an analytical method is proposed to study coal seam leakage under mining conditions in the blown-sand beach region based on the structure and permeability coefficient of the combination protective layer. First, the stress path of the overlying combination aquiclude under coal mining disturbance is comprehensively considered. Based on this, triaxial loading and unloading seepage creep experiments are conducted with different proportions of overlying combination aquiclude. The analytical relationship between the permeability coefficient of the samples and loess proportion, stress level, and soil depth in the stress recovery stage is determined, leading to the establishment of a creep permeability coefficient evolution model for the overlying combination aquiclude of the coal seam under the stress path of coal mining. Second, the creep permeability coefficient evolution model is integrated with a fusion algorithm in COMSOL numerical simulation software. Numerical simulations are then performed to examine the evolution law of phreatic leakage during coal seam mining and recovery, revealing a relationship curve in which leakage gradually decreases over time before stabilizing in the post-mining recovery stage. Finally, based on mathematical and statistical methods, a phreatic leakage evolution model is developed for both mining and post-mining stages to provide a theoretical basis for environmental protection.

期刊论文 2025-06-01 DOI: 10.1007/s10064-025-04312-0 ISSN: 1435-9529
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-1条  共1条,1页