Mass conversion of native vegetation to agricultural land-use triggered secondary salinity, a hydrological imbalance, which has damaged more than 1.75 million ha of farmland in south-western Australia. Various types of reforestation have been proposed and tested to restore the hydrological balance, however the economic returns from these cannot compete with existing farm practice and land-holders thus have a reluctance to adopt. An alternative approach has been to reforest abandoned saline areas with salinity and/or water-logging tolerant trees to avoid displacement of farming activities. This reforestation approach is explicitly effective for carbon mitigation and thus finding appropriate tree species is essential. To select suitable tree species, three eucalypt species were planted adjacent to a salt scald in Wickepin, Western Australia, and their survival and growth on a site with saline soil and a shallow (< 1 m depth) saline ground water system. Survival and growth of Eucalyptus sargentii and E. salubris in the saline discharge areas were comparable to those in a non-saline area, and reforestation by these species can thus avoid land competition with farming activities and minimize opportunity costs. The biomass increment of E. sargentii was about three times higher than that of E. salubris in the saline areas (3.43 vs 1.12 Mg ha(-1) year(-1)) over a 9.25 years period, and therefore E. sargentii can sequester more carbon (6.3 vs 2.1 Mg-CO(2)e ha(-1) year(-1)) and mitigate hydrological imbalance within a much smaller reforestation area than E. salubris. Considering land use efficiency, cost-effectiveness and carbon mitigation efficiency, E. sargentii is the recommended tree species for reforestation to mitigate secondary salinity in Western Australia.
Restoration is moving towards a more mechanistic approach that emphasizes restoration of ecosystem services. Trait-based approaches provide links between species identity and ecosystem functions and have been suggested as a promising way to formally integrate ecosystem services in the design of restoration programs. While practitioners have been routinely using informal knowledge on plant traits in their practices, these approaches are underutilized as operationalization remains challenging. The goal of this paper is to provide guidance for applied scientists and restoration practitioners looking to apply a trait-based approach to restore forest ecosystems. We present a five-step framework: (1) selection of services to be restored, (2) trait selection, (3) data acquisition, (4) analytical planning, and (5) empirical testing and monitoring. We use three Canadian case studies to illustrate the applicability of our framework and the variety of ways trait-based approaches can inform restoration practices: (1) restoration of urban woodlots after an insect outbreak, (2) restoration of a smelter-damaged landscape surrounding an urban area, and (3) reclamation of remote upland forests after oil- and gas-related disturbances. We describe the major mechanisms and traits that determine vegetation effects on ecosystem services of importance in each case study. We then discuss data availability, methodological constraints, comparability issues, analytical methods, and the importance of empirical testing and monitoring to ensure realistic prediction of service restoration. By outlining issues and offering practical information, we aim to contribute to a more robust use of traits in ecological restoration.
Emissions of air pollutants cause damage to health and crops, but several air pollutants also have an effect on climate through radiative forcing. We investigate efficiency gains achieved by integrating climate impacts of air pollutants into air quality strategies for the EU region. The pollutants included in this study are SO2, NH3, VOC, CO, NOx, black carbon, organic carbon, PM2.5, and CH4. We illustrate the relative importance of climate change effects compared to damage to health and crops, as well as monetary gains of including climate change contributions. The analysis considers marginal abatement costs and compares air quality and climate damage in Euros. We optimize abatement policies with respect to both climate and health impacts, which imply implementing all measures that yield a net benefit. The efficiency gains of the integrated policy are in the order of 2.5 billion Euros, compared to optimal abatement based on health and crop damage only, justifying increased abatement efforts of close to 50%. Climate effect of methane is the single most important factor. if climate change is considered on a 20- instead of a 100-year time-scale, the efficiency gain almost doubles. our results indicate that air pollution policies should be supplemented with climate damage considerations. (C) 2009 Elsevier Ltd. All rights reserved.