With an increase in global demand for food without unwanted environmental issues stresses a need for sustainable agriculture. Up till now, conventional agricultural methods focused on obtaining great crop yields from the use of chemical fertilizers but overlooked the hazardous concerns that are leading to soil depletion. These chemical fertilizers adversely affect soil structure, decrease fertility, damage soil flora, and lead to soil erosion. In this scenario, understanding the natural mechanisms of plant-microbe interactions in the rhizospheric environment can potentially lead a way towards eco-friendly agriculture, as the plant associating bacteria prompting phytostimulation can be the key players in unlocking sustainable alternative for conventional fertilizers. Plant growth-promoting bacteria (PGPB) are a distinct class of soil microorganisms that promote plant growth and yields by enhancing nutrient delivery and shielding the plants against diseases. N fixing bacteria such as Rhizobium and Azotobacter, for instance, fix atmospheric nitrogen into a usable form for plants, Pseudomonas and Bacillus induce root and shoot elongation by synthesizing phytohormones. These bacteria also provide protection to plants by synthesizing antimicrobial substances and increasing the competitive nature of the rhizosphere. Bacteria like Azospirillum, Enterobacter, and Flavobacterium also stimulate plant growth by producing phytohormones under specific envirnmental conditions. Utilization of PGPB as bio-stimulants in agriculture is a promising method for sustainable agriculture dependence on chemical fertilizers and maintaining soil health. This approach would play an important role in sustaining a balanced ecosystem along with increasing agricultural productivity.
The soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a significant agricultural pest that causes extensive damage to soybean production worldwide. Second-stage juveniles (J2s) of the SCN migrate through the soil and infest the roots of host plants in response to certain chemical substances secreted from the host roots. Therefore, controlling SCN chemotaxis could be an effective strategy for its management. In the present study, we identified the Hg-gpa-3d gene, which encodes the G protein alpha subunit, as a key regulator of SCN chemotaxis. Gene silencing of Hg-gpa-3d reduced the attraction of SCN J2s to host roots, as well as to nitrate ions, a chemoattractant recognized through a mechanism different from that of host recognition. However, silencing of Hg-gpa-3d did not affect avoidance behavior towards unpleasant temperatures or stylet protrusion. These results suggest that Hg-gpa-3d is a crucial gene in the regulation of SCN chemotaxis and provide new insights into the chemotactic mechanisms of the SCN.