Arsenic (As) contamination of soil and groundwater poses a huge threat to world health by polluting food systems and causing major health problems, such as cancer, cardiovascular disease,skin lesions,kidney damage and other serious health problems. In recent years, there has been a lot of effort into designing, synthesizing, and developing chemosensors for arsenic species. Chemosensors containing heteroatoms such as oxygen, nitrogen, and sulfur provide coordination sites for metal ion detection. This study investigates the study of organic compounds for the fluorimetric and colorimetric detection of As ions in biological, agricultural, and environmental samples. These chemosensors are based on the skeleton of Schiff bases, thiourea, and pyridine. By comparing their identification capabilities, we hope to guide the development of future arsenic chemosensors that are efficient, sensitive, and selective, leading to more accessible methods for arsenic monitoring in a variety of real-world applications.