The formation of a unique microstructure of minerals on the surface of airless bodies is attributed to space weathering. However, it is difficult to distinguish the contributions of meteorite impacts and solar wind to the modification of lunar soil, resulting in limited research on the space weathering mechanism of airless bodies. The thermochemical reactivity of troilite can be used to distinguish the contributions of impact events and solar wind to the modification of lunar soil and provide evidence for space weathering of lunar soil. We examined the structure of troilite particles in the Chang'e-5 lunar soil and determined whether an impact caused the thermal reaction. Microanalysis showed that troilite underwent substantial mass loss during thermal desulfurization, forming a crystallographically aligned porous structure with iron whiskers, an oxygen-rich layer, and other crystallographic and thermochemical evidence. We used an ab initio deep neural network model and thermodynamic calculations to conduct experiments and determine the anisotropy and crystal growth of troilite. The surface microstructure of troilite was transformed by the thermal reaction in the vacuum on the lunar surface. Similar structures have been found in near-Earth objects (NEOs), indicating that small bodies underwent the same impact-induced thermal events. Thus, thermal reactions in a vacuum are likely ubiquitous in the solar system and critical for space weathering alterations of the soil of airless bodies.
The extent of volatile elements on the surface and interior of the Moon remains a highly debated topic. Previous studies conducted on bulk lunar soil samples and solar wind samples collected by the Genesis mission indicate a discernible isotope mass- or non-mass-dependent fractionation of krypton and xenon. However, a detailed investigation of these processes is missing, particularly in determining the possible incorporation of cometary volatiles in the lunar regolith. New lunar soil samples returned by the Chang'e-5 mission provide a chance to answer these key questions. In this study, noble gas isotopes of nine subsamples from a Chang'e-5 scooped sample were analysed through stepwise-heating and total fusion laser extraction. The results reveal that a simple binary mixture of solar wind and cosmogenic components did not explain alone the isotopic composition of these samples. The Xe data shows insignificant amounts of atmospheric Xe and presents clear evidence of cometary contributions to the lunar regolith, with a significant depletion of 134,136Xe compared to that in the solar wind. Additionally, a meteoritic component is identified. Compared to the Apollo results, our findings further validate the theory of Earth's atmospheric escape, substantiate the plausibility of these exogenous admixtures to elucidate the isotopic fractionation mechanisms of Kr and Xe within the lunar regolith, and provide novel insights into long-term constancy in the solar wind composition.