共检索到 10

The Moon encountered an extreme space weather event (NOAA G5 class) on 10 May 2024, caused by a series of coronal mass ejections (CMEs). Chandra's Atmospheric Composition Explorer-2 (CHACE-2), a neutral gas mass spectrometer on board Chandrayaan-2 orbiter, made in situ observations of the lunar exosphere during this period. Observations show an increase in total pressure around the arrival time of the CME impact on the Moon. The corresponding total number densities derived from these observations show an enhancement in the total number densities by more than an order of magnitude. The increase in lunar exospheric number densities by a factor > 10, due to the solar wind ion sputter process, is consistent with earlier theoretical modeling. This is the first observational confirmation of the enhancement in lunar exospheric densities during a CME impact.

期刊论文 2025-07-30 DOI: 10.1029/2025GL115737 ISSN: 0094-8276

Detection of water-ice deposits using synthetic aperture radar (SAR) is a cost-effective, and efficient approach to understand lunar water resources. As water is crucial to supporting human-based space exploration, current and near upcoming lunar missions are primary concentrated on mapping and quantification of water ice exposures on surface and subsurface levels. The circular polarization ratio greater than one (CPR >1) derived using the orbital radar observations is considered as an important SAR derived parameter for water-ice detection. This study aims to investigate 14 craters near the lunar poles with high CPR (CPR >1), as identified in previous studies, using the L-band (24 cm) dual frequency synthetic aperture radar (DFSAR) onboard Chandrayaan-2. In addition to CPR, we computed the degree of polarization (DOP) after applying parallax error correction that helps in reducing misinterpretation. Our findings are based on orthorectified DFSAR calibrated data analysis. We found that the CPR of crater interiors is not significantly different from that of their surroundings, and this pattern is consistent throughout all the 14 craters selected. Further, we also found a linear inverse relationship between CPR and DOP for the interior and exteriors of the craters, with R-2 0.99, indicating a strong correlation between these two parameters. We found only 2 % of total pixels are above CPR > 1, which indicates that there is less possibility of homogeneous water-ice but the possibility of water-ice mixed with the subsurface regolith cannot be ruled out.

期刊论文 2025-05-15 DOI: 10.1016/j.icarus.2025.116492 ISSN: 0019-1035

This work reports the spatial and diurnal variations of the number densities of lunar molecular water (H2O), atomic mass unit (amu) 18 and hydroxyl (OH), amu 17 over low (0 degrees to 30 degrees), middle (31 degrees to 60 degrees) and high (61 degrees to 80 degrees) latitudinal regions of the lunar exosphere during the pre-sunrise, noon, sunset and midnight periods using the mass spectrometric data of CHandra's Atmospheric Composition Explorer-2 (CHACE-2) on board Chandrayaan-2, the second lunar mission developed in India. Both H2O and OH exhibit, particularly in the low latitude regions, a trend of increasing number density after the sunrise and up to noon, followed by a decrease till sunset. An overall higher density of H2O is obtained compared to the previous reports. The findings are justified in terms of the polar orbital height of the instrument and the duration of data procurement. The maximum number density for the low, middle and high latitudes reaches 5225 cm- 3, 5135 cm- 3 and 3747 cm- 3, respectively. The corresponding OH abundances are found to be 5079 cm-3, 5565 cm-3 and 5720 cm- 3. The diurnal variations of H2O and OH and their comparisons, similar to those of the present report may provide suitable means for tracing the lunar water cycle. The CHACE-2 observations imply that the influence of magnetotail passage on volatiles like water is to be further quantified in future missions with other sensors.

期刊论文 2025-01-15 DOI: 10.1016/j.icarus.2024.116365 ISSN: 0019-1035

The characterization of the lunar surface and subsurface through the utilization of synthetic aperture radar data has assumed a pivotal role in the domain of lunar exploration science. This investigation concentrated on the polarimetric analysis aimed at identifying water ice within a specific crater, designated Erlanger, located at the lunar north pole, which is fundamentally a region that is perpetually shaded from solar illumination. The area that is perpetually shaded on the moon is defined as that region that is never exposed to sunlight due to the moon's slightly tilted rotational axis. These permanently shaded regions serve as cold traps for water molecules. To ascertain the presence of water ice within the designated study area, we conducted an analysis of two datasets from the Chandrayaan mission: Mini-SAR data from Chandrayaan-1 and Dual-Frequency Synthetic Aperture Radar (DFSAR) data from Chandrayaan-2. The polarimetric analysis of the Erlanger Crater, located in a permanently shadowed region of the lunar north pole, utilizes data from the Dual-Frequency Synthetic Aperture Radar (DFSAR) and the Mini-SAR. This study focuses exclusively on the L-band DFSAR data due to the unavailability of S-band data for the Erlanger Crater. The crater, identified by the PSR ID NP_869610_0287570, is of particular interest for its potential water ice deposits. The analysis employs three decomposition models-m-delta, m-chi, and m-alpha-derived from the Mini-SAR data, along with the H-A-Alpha model known as an Eigenvector and Eigenvalue model, applied to the DFSAR data. The H-A-Alpha helps in assessing the entropy and anisotropy of the lunar surface. The results reveal a correlation between the hybrid polarimetric models (m-delta, m-chi, and m-alpha) and fully polarimetric parameters (entropy, anisotropy, and alpha), suggesting that volume scattering predominates inside the crater walls, while surface and double bounce scattering are more prevalent in the right side of the crater wall and surrounding areas. Additionally, the analysis of the circular polarization ratio (CPR) from both datasets suggests the presence of water ice within and around the crater, as values greater than 1 were observed. This finding aligns with other studies indicating that the high CPR values are indicative of ice deposits in the lunar polar regions. The polarimetric analysis of the Erlanger Crater contributes to the understanding of lunar polar regions and highlights the potential for future exploration and resource utilization on the Moon.

期刊论文 2025-01-01 DOI: 10.3390/rs17010031

CHandra's Atmospheric Composition Explorer-2 (CHACE-2) is a neutral gas mass spectrometer aboard Chandrayaan-2 orbiter. CHACE-2 is a quadrupole based mass spectrometer which detects neutral atoms/molecules in the mass range of 1-300 amu. The data product from CHACE-2 observations provide the partial pressure for different masses that essentially constitute the mass spectra. CHACE-2 scans different masses using suitable voltages such that each mass is contributed by nine mass bins, known as samples. Each spectrum (mass along x -axis and partial pressure along y-axis) is constructed based on these 9 samples, where the fifth sample is expected to be at the center of the peaks. During the actual measurements in space, mass shifts have been observed such that the center of the peaks doesn't coincide with the expected mass bin, but rather shifted to either lower or higher mass bins. Also, the 9 samples that determines the peak shape need not follow the expected pattern. Suitable criteria have been arrived at in order to verify the quality of each spectrum. In view of the large data sets, an algorithm has been developed to determine and calibrate the mass shift, verify the quality of the spectrum based on the criteria and generate suitable flags in the output file. The algorithm is referred to as 'Peak Filter Algorithm'. The output of the algorithm has been validated and the output has been found to be matching with that expected. The details of the algorithm along with the validation results are presented in this paper. The output of the algorithm is significant for the scientific analysis of CHACE-2 data, and also useful for the analysis of data from instruments similar to that of CHACE-2 in future missions.

期刊论文 2023-09-01 DOI: 10.1016/j.ijms.2023.117098 ISSN: 1387-3806

To confirm the presence of water on the moon, many scientists of the world are making continuous efforts through remote sensing data of different missions. In this direction, the Dual Frequency Synthetic Aperture Radar (DFSAR) sensor of the Chandrayaan-2 mis-sion adds a very important chapter which is the world's first Planetary SAR mission of fully polarimetric capability with L-and S-band. This study utilizes the L-band fully polarimetric DFSAR data of Chandrayaan-2 mission for the PolSAR parameters-based analysis and ice detection in permanently shadowed regions (PSRs) of the lunar South Polar craters. The PSR IDs SP_875930_3125710, SP_837670_3387710, and SP_874930_3578760 of the lunar South Pole were selected for the polarimetric analysis using DFSAR L -band. Based on previous studies ((Li et al., 2018), two out of three PSR Ids (SP_875930_3125710 and SP_874930_3578760) were easy to identify for surface ice. That is why only two PSR IDs were used for polarimetric SAR analysis of DFSAR data for surface ice char-acterization and detection. The hybrid polarimetric simulation was also performed to the fully polarimetric L-band data to study stokes vectors and associated child parameters for the selected study area. The analysis of polarimetric distortions confirms the persistence of the polarimetric quality of the SAR data and for this, the polarimetric distortion analysis was performed with co-pol and cross-pol chan-nels. Wave dichotomy-based Huynen decomposition and Barnes decomposition models were implemented to the fully polarimetric quad-pol DFSAR data. The eigenvalue-eigenvector-based decomposition model was also implemented to characterize the scattering behavior of the PSRs. A high correlation was obtained between Circular Polarization Ratio (CPR), entropy, and alpha for the 200 hundred points randomly collected from the image. Diversity index also showed a high positive correlation with CPR. The polarimetric quality of the data was evaluated with the scatterplot between the cross-polarimetric channels and it was observed that the L-band quad-pol data of DFSAR satisfies the criteria for PolSAR data of a monostatic SAR system. Analysis of the results obtained from the polarimetric SAR data indicated that the high volumetric scattering and CPR for the PSR ID SP_875930_3125710 may be due to ice clusters within the permanently shadowed region. Polarimetric analysis of the PSR (SP_874930_3578760) at Howarth Crater using L-band DFSAR data shows a low amount of volumetric scattering and a low CPR for most locations in the PSR. The different ranges of CPR and volume scattering for both craters indicate that polarimetric parameters and indices should be studied in conjunction with geomorphological parameters of the lunar surface, for unambiguous identification of surface ice clusters in the PSR. (c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.

期刊论文 2022-12-15 DOI: 10.1016/j.asr.2022.01.038 ISSN: 0273-1177

Studies of the lunar surface from Synthetic Aperture Radar (SAR) data have played a prominent role in the exploration of the lunar surface in recent times. This study uses data from SAR sensors from three Moon missions: Chandrayaan-1 Mini-SAR, Lunar Recon-naissance Orbiter (LRO) Mini-RF and Chandrayaan-2 Dual Frequency Synthetic Aperture Radar (DFSAR). DFSAR sensor is the first of its kind to operate at L-band and S-band in fully and hybrid polarimetric modes. Due to the availability of only L-band data out of the two bands (L-and S-band) for the study site, this study only used DFSAR's L-band data. The dielectric characterization and polarimetric analysis of the lunar north polar crater Hermite-A was performed in this study using Chandrayaan-1 Mini-SAR, LRO Mini-RF and Chandrayaan-2 DFSAR data. Hermite-A lies in the Permanently Shadowed Region (PSR) of the lunar north pole and whose PSR ID is NP_879520_3076780. Because of its location within the PSR of the lunar north pole, the Hermite-A makes an ideal candidate for a probable location of water-ice deposits. This work utilizes S-band hybrid polarimetric data of Mini-SAR and Mini-RF and L -band fully polarimetric data of DFSAR for the lunar north polar crater Hermite-A. This study characterizes the scattering mechanisms from three decomposition techniques of Hybrid Polarimetry namely m-delta, m-chi, and m-alpha decompositions, and for fully polari-metric data Barnes decomposition technique was applied which is based on wave dichotomy. Eigenvector and Eigenvalue-based decom-position model (H-A-Alpha decomposition) was also applied to characterize the scattering behavior of the crater. This study utilizes the hybrid-pol and fully polarimetric data-based Integral Equation Model (IEM) to retrieve the values of dielectric constant for Hermite-A crater. The dielectric constant values for the Hermite-A crater from Chandrayaan-1 Mini-SAR and LRO Mini-RF are similar, which goes further in establishing the presence of water-ice in the region. The values of the dielectric constant for Chandrayaan-2 in some regions of the crater especially on the left side of the crater is also around 3 but overall the range is relatively higher than the com-pact/hybrid polarimetric data. The dielectric characterization and polarimetric analysis of the Hermite-A indicatively illustrate that the crater may have surface ice clusters in its walls and on some areas of the crater floor, which can be explored in the future from the synergistic use of remote sensing data and in-situ experiments to confirm the presence of the surface ice clusters.(c) 2022 COSPAR. Published by Elsevier B.V. All rights reserved.

期刊论文 2022-12-15 DOI: 10.1016/j.asr.2022.04.059 ISSN: 0273-1177

We report the first observation of Argon-40 (Ar-40) in the mid latitude regions (-60 degrees to +60 degrees) of the lunar exosphere from CHandra's Atmospheric Composition Explorer-2 (CHACE-2) experiment aboard Chandrayaan-2 orbiter. The number density of Ar-40 shows pre-sunrise, sunrise and sunset peaks as well as nightside minima, typical of a condensable gas, which is similar to the features seen at the low latitudes in previous observations. The CHACE-2 observed number densities of Ar-40 and its diurnal variation at low latitudes (-30 degrees to +30 degrees) is consistent with LACE/Apollo observations. CHACE-2 observations show Ar-40 enhancements over certain longitude sectors. In addition to KREEP region, Ar-40 bulges are observed at other longitudes, including the South Pole Aitken (SPA) terrain. The global distribution of Ar-40 shows that the sunrise peak is observed at the same local time over highlands and mare regions. These observations call for a deeper understanding of the surface-exosphere interactions and source distribution. Plain Language Summary The Moon is known to possess a tenuous atmosphere, known as surface bound exosphere. Lunar exosphere exists as a result of a dynamic equilibrium between several sources and sink processes. Noble gases serves as important tracers to understand such processes. Though, Argon-40 (Ar-40) is known to exist in lunar exosphere, the knowledge on its distribution at higher latitudes is lacking. For the first time, CHandra's Atmospheric Composition Explorer-2 (CHACE-2) experiment aboard Chandrayaan-2 orbiter has continuously observed Ar-40 in latitude range of -60 degrees to +60 degrees. It is found that the Ar-40 density variation with local solar time shows the behavior of a condensable gas, which is similar to that observed earlier at low latitudes. The distribution of Ar-40 shows spatial heterogeneity with localized enhancements over KREEP and South Pole Aitken terrain. This suggests that there may be other regions with lower activation energy as the source of Ar-40. The observed global distribution indicates that the interaction of Ar-40 with the surface are similar in low and mid latitude regions. The CHACE-2 observations hint at requirement for improvement in our understanding of the surface-exosphere interactions and source distributions of Ar-40. Key Points First observation of Argon-40 in the mid latitude exosphere of the Moon Observed nightside minimum and sunrise and sunset peaks in Ar-40 abundance is similar to that at low latitudes Enhanced Ar-40 number density is observed at few longitudes, including South Pole Aitken terrain, in addition to KREEP

期刊论文 2021-10-28 DOI: 10.1029/2021GL094970 ISSN: 0094-8276

The CHandra's Atmospheric Composition Explorer-2 (CHACE-2) experiment aboard Chandrayaan-2 orbiter will study in situ, the composition of the lunar neutral exosphere in the mass range 1-300 amu with mass resolution of 0.5 amu. It will address the spatial and temporal variations of the lunar exosphere, and examine water vapour as well as heavier species in it. In this article, results of the major characterization and calibration experiments of CHACE-2 are presented, with an outline of the qualification tests for both the payload and ground segment.

期刊论文 2020-01-25 DOI: 10.18520/cs/v118/i2/202-209 ISSN: 0011-3891

Next Indian Lunar mission Chandrayaan-2 is expected to be launched in 2017/18 with a Lunar Orbiter Lander and Rover. Basically, the requirement of the Lander includes communication, Landing area shape, topography and sunlit area. For analyzing the landing site of chandryaan-2 we are using the data of LOLA which is one of the payloads onboard Lunar Reconnaissance Orbiter (LRO). The Lunar Orbiter Laser Altimeter (LOLA) is an instrument designed to assist in the selection of landing sites on the Moon for future robotic and human exploration. ICRS has analyzed total ten craters; three of them are located in the North Pole while remaining seven craters are located in the South Pole of the Moon. Permanently Shadowed Region (PSR) on the south pole of the lunar surface is of special interest to researchers due the presence of trapped water ice into these PSRs.

期刊论文 2016-01-01
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-10条  共10条,1页