Maize and wheat are two important cereal crops for the food security of the world population. However, constant climate change and the intensification of anthropic activities have intensified the emergence of stressful environmental in the various agricultural production systems around the world. Therefore, in this study we evaluate the chlorophyll content, photosynthesis, transpiration and grain yield of maize and wheat crops exposed to soil salinity, drought and high temperatures and determine the damage intensity of these stressing conditions and the theoretical multifactorial damage intensity. Field experiments were conducted during the 2022 and 2023 agricultural seasons in the Yaqui Valley, Sonora, Mexico. The treatments consisted of the cultivation of maize and wheat in three stressful production environments (soil salinity, drought and high temperatures) and a non-stressful production environment (Control), with four repetitions. The tolerance and intensity index of abiotic stresses, as well as the intensity of theoretical multifactorial stress (salinity, drought and high temperatures), for morphological traits and grain yield, were calculated. The results reported that physiological traits and yield of maize and wheat are severely affected by drought stress conditions. High temperatures are the second abiotic stress factor that most limits physiological traits and grain yield of maize and wheat crops, being more harmful than soil salinity. The theoretical multifactorial stress has a greater negative impact on the yield of the elite maize and wheat varieties. The sum of a stressful environmental factor increases the intensity of multifactorial stress on grain yield of both cereal crops, especially for maize crop.
Nanotechnology represents an innovative approach to ameliorating abiotic stress in oilseed crops, with the application of iron oxide nanoparticles (FeO-NPs) gaining notable popularity recently. Therefore, we have utilized FeO-NPs as an alleviating agent on an oilseed crop, specifically rapeseed (Brassica napus L.), grown in soil with varying levels of arsenic (As). This study investigates various growth-related attributes, the efficiency of the photosynthetic machinery, indicators of oxidative stress, and responses of both enzymatic and non-enzymatic antioxidants, along with their specific gene expression, sugar content, organic acids exudation pattern and As accumulation in different parts of the plant. Our findings indicated that soil contaminated with As reduced crop growth, photosynthetic efficiency, and nutritional status in plants, while simultaneously enhancing oxidative stress indicators, organic acid exudation, activity of both enzymatic and non-enzymatic antioxidants and their related gene expressions, and endogenous As content in the shoots and roots of B. napus. Moreover, increasing levels of As in the soil caused a signifcant increase in proline and organic acids exudation pattern. However, the exogenous application of FeO-NPs enhanced plant growth and the photosynthetic rate in B. napus by boosting the antioxidant system and mineral status, and by reducing the concentrations of oxidative stress biomarkers, organic acids, and As accumulation in both roots and shoots. Hence, this study suggests that seed priming with FeO-NPs is an effective technique that can be employed to fortify nutrients and mitigate metal toxicity in areas polluted with metals.
Background Utilizing rice straw biochar (RSB) presents a novel approach to overcome toxicity of arsenic (As) in agricultural settings. Similarly, silicon (Si) has emerged as an effective agent for overcoming metal stress within agricultural crops. The present study investigates into the syringic application of RSB and Si in ameliorating As-induced stressed in Oryza sativa L. (rice) seedlings. Methods In the present study, we have used different levels of RSB (0, 2.5, and 5% w/w) and Si (0, 1.5, and 3 mM) to O. sativa seedlings when exposed to different levels of As stress i.e., 0, 50 and 100 mu M to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants. Results Our results showed that the increasing concentration of As in the soil significantly (P < 0.05) decreased total plant length, root length, shoot fresh weight, root fresh weight, shoot dry weight and root dry weight by 26, 12, 18, 34, 39 and 20% respectively, compared to the plants which were grown in the 0 M of As in the soil. Additionally, As stress in the soil increased the concentration of reactive oxygen species (ROS) causes oxidative damaged to membranous bounded organelles, increases organic acids, As concentration, affects antioxidants, proline metabolism, AsA-GSH cycle and cellular fractionation. Although, Although, the application of Si and RSB showed a significant (P < 0.05) increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and their gene expression and also decreased oxidative stress. In addition, the application of Si and RSB enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa seedlings. Conclusion These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of heavy metal contamination in agricultural soils.