To address the engineering problems of road subsidence and subgrade instability in aeolian soil under traffic loads, the aeolian soil was improved with rubber particles and cement. Uniaxial compression tests and Digital speckle correlation method (DSCM) were conducted on rubber particles-cement improved soil (RP-CIS) with different mixing ratios using the WDW-100 universal testing machine. The microcrack and force chain evolution in samples were analysed using PFC2D. The results showed that: (1) The incorporation of rubber particles and cement enhanced the strength of the samples. When the rubber particles content was 1% and the cement content was 5%, the uniaxial compressive strength of the RP-CIS reached its maximum. Based on the experimental results, a power function model was established to predict the uniaxial compressive strength of RP-CIS; (2) The deformation of the samples remains stable during the compaction stage, with cracks gradually developing and penetrating, eventually entering the shear failure stage; (3) The crack and failure modes simulated by PFC2D are consistent with the DSCM test. The development of microcracks and the contact force between particles during the loading are described from a microscopic perspective. The research findings provide scientific support for subgrade soil improvement and disaster prevention in subgrade engineering.
A series of large-scale (1:13) model tests of multi-stage loading and unidirectional multi-cycle loading were conducted on semi-rigid piles before and after cement-soil reinforcement in clay. The difference of ultimate bearing capacity between unreinforced and reinforced piles under different criterions is discussed, and their bending moment and displacement distribution rules are revealed. Meanwhile, the cyclic bearing behaviour of the unreinforced and reinforced piles are compared and analyzed, including cyclic load-displacement response, unloading stiffness, cumulative peak & residual displacement, peak & locked in moment. The test results show that the ultimate bearing capacity of the large diameter pile is increased by 34.4 % and the initial stiffness is increased by 56.8 % (reinforced width is 3D and depth is 1D) in the multistage loading test. Comparing the monotonic and cyclic load-displacement curves of unreinforced and reinforced piles obtained by multi-stage loading test and unidirectional multi-cycle loading test respectively, it is found that when the applied load is small, the curve obtained from multistage loading test is almost coincident with the first cycle envelope of all load levels in 1-way multi-cycle loading test, indicating that the cyclic effect is not significant. As the load increases, the difference between the curves becomes larger, indicating that the cyclic loading of higher amplitude causes greater soil disturbance. In addition, after applying cement-soil to the shallow soil around monopile, cement-soil reinforced pile exhibits a more rigid response, specifically manifested as an initial unloading stiffness of 1.76 times that of unreinforced pile, and a slower stiffness degradation rate. Meanwhile, the cyclic peak displacement & residual displacement accumulation of reinforced piles are smaller than that of the unreinforced pile, thereby reducing the development of the locked in moment.