共检索到 2

The interfacial frictional resistance of anchor solids, bolt, and the surrounding soil of soil nails in the flexible support structures of frozen soil slopes is a key parameter for calculating and evaluating its stability. Based on a series of direct shear tests under the condition of a constant normal load boundary, the shear mechanical behavior of the interface between the soil and a cement slurry block under different soil temperatures, water contents, and normal pressures was studied, and the interfacial deformation mechanism was analyzed. The results show that in the thawing state, with the increase of water content, the shear surface moves from the side close to the soil to the side close to the cement slurry block. However, the shear plane is determined in the direct shear test, which makes the effect of the change of the soil's own strength on the interfacial shear strength smaller. In the frozen state, the behavior of the interfacial shear stress-shear displacement behavior at the same water content varies from strain-hardening type to strain-softening type with the temperature decreasing. The normal displacement is affected by temperature, normal pressure, and water content. At the same temperature, the maximum normal displacement gradually decreases with the increase of water content and normal pressure. At the same normal pressure and water content, the maximum normal displacement tends to increase and then decrease as the temperature drops. Still, the maximum normal displacement in the frozen state is more significant than in the thawing state. At the same water content and normal pressure, the interfacial peak shear strength shows a nonlinear increase with the decrease in temperature. At the same normal pressure and temperature, the interfacial peak shear strength delivers a linear increasing law with increasing water content. The peak interfacial cohesion increases with the decreasing temperature and increasing water content, and this phenomenon is more evident at lower temperatures. The interfacial friction angle does not change significantly with the rise in water content at the same temperature, but as temperature decreases, its average value increases significantly. The research results can provide a reference for the design of slope support structures in cold regions.

期刊论文 2024-05-01 DOI: 10.1061/JMCEE7.MTENG-16101 ISSN: 0899-1561

Affected by global warming, permafrost thawing in Northeast China promotes issues including highway subgrade instability and settlement. The traditional design concept based on protecting permafrost is unsuitable for regional highway construction. Based on the design concept of allowing permafrost thawing and the thermodynamic characteristics of a block-stone layer structure, a new subgrade structure using a large block-stone layer to replace the permafrost layer in a foundation is proposed and has successfully been practiced in the Walagan-Xilinji of the Beijing-Mohe Highway to reduce subgrade settlement. To compare and study the improvement in the new structure on the subgrade stability, a coupling model of liquid water, vapor, heat and deformation is proposed to simulate the hydrothermal variation and deformation mechanism of different structures within 20 years of highway completion. The results show that the proposed block-stone structure can effectively reduce the permafrost degradation rate and liquid water content in the active layer to improve subgrade deformation. During the freezing period, when the water in the active layer under the subgrade slope and natural ground surface refreezes, two types of freezing forms, scattered ice crystals and continuous ice lenses, will form, which have different retardation coefficients for hydrothermal migration. These forms are discussed separately, and the subgrade deformation is corrected. From 2019 to 2039, the maximum cumulative settlement and the maximum transverse deformation of the replacement block-stone, breccia and gravel subgrades are -0.211 cm and +0.111 cm, -23.467 cm and -1.209 cm, and -33.793 cm and -2.207 cm, respectively. The replacement block-stone subgrade structure can not only reduce the cumulative settlement and frost heave but also reduce the transverse deformation and longitudinal cracks to effectively improve subgrade stability. However, both the vertical deformation and transverse deformation of the other two subgrades are too large, and the embankment fill layer will undergo transverse deformation in the opposite direction, which will cause sliding failure to the subgrades. Therefore, these two subgrade structures cannot be used in permafrost regions. The research results provide a reference for solving the settlement and deformation problems of subgrades in degraded permafrost regions and contribute to the development and application of complex numerical models related to water, heat and deformation in cold regions.

期刊论文 2022-09-01 DOI: 10.3390/w14172642
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页