Dispersive soils, due to their high erodibility and cation exchange sensitivity, pose significant challenges in geotechnical applications. This study investigates the engineering behavior of such soils under a wide range of thermal regimes (25-900 degrees C), focusing on their mechanical, hydraulic, and physicochemical properties. Unlike previous studies that emphasized microstructure alone, this research integrates a broad range of analytical methodsmineralogical (XRD, SEM), chemical (CEC, SSA, carbonate content), and geotechnical (Atterberg limits, unconfined compressive strength, permeability, TGA) to capture a comprehensive understanding of thermal stabilization effects. Results reveal that thermal treatment significantly enhances soil performance: at 300 degrees C, dispersion decreased by 65% due to complete free water removal; at 500 degrees C, dehydroxylation induced structural rearrangement and mineral breakdown, improving both strength and permeability. At 700 degrees C and beyond, the formation of cementitious phases such as gehlenite and anorthite transforms the soil into a dense, non-dispersive medium, increasing UCS by 36.5 times and permeability by 12,000 times. These findings emphasize the effectiveness of high-temperature treatment as a sustainable and technically sound approach for stabilizing dispersive soils in geotechnical and environmental applications, including landfill liners, geothermal barriers, and contaminant containment zones.
The studied region is located in the southwestern Iran and on the border of Iran and Iraq. In the past, this region had dense palm groves and abundant plants. However, due to the decrease in upstream discharge, in recent years, saline and sodium seawater has intrusion in the river and affected the agricultural lands along its sides. This event has caused irreparable and serious damage to the agricultural industry in the region, turning this area into a graveyard of date palm trees. Understanding the characteristics of agricultural soils for their improvement and/or planting appropriate plants is one of the goals of sustainable agriculture. Considering the damage of the studied area from the intrusion of salt water in the Arvand River, this study investigated important characteristics of soil salinity including EC, pH, C.E.C, SAR and ESP. In this research, sampling of agricultural soils along the riverside was carried out in three different horizons and two line parallel to the river and at two different distances. Statistical methods of correlation coefficient, hierarchical analysis and factor analysis were used to identify the factors affecting soil quality and the relationships between parameters. The results showed that due to the intrusion of sodium seawater, the soils of the studied area have become saline-sodium, and the salinity level in the soils near the river mouth is higher than that in the soils on the upstream side of the river. In terms of fertility, the cation exchange capacity is in the medium range, and the clay texture and abundant organic matter of the soil as a result of the remaining plant and tree residues have an important effect on this parameter.
As a typical special soil, red clay found in Guizhou Province, China, must be improved before it can be used for projects owing to its high plasticity. As a soil curing agent, the Consolid system is applicable to a wide range of soils, has good improvement effects and a simple operation, and is environmentally friendly. The effects of the dosage and curing age of the Consolid system on the unconfined compressive strength and shrinkage properties of the cured red clay-gravel mixture are studied. The results showed that both these properties of the red clay-gravel mixture were significantly improved by the Consolid System, and the higher the dosage of the Consolid system, the better the improvement effect. The thermal methods of thermogravimetric analysis and differential scanning calorimetry were used to determine that the bound water content was related to the amount of Consolid system admixture. With the increase in the dosage of the Consolid system, the weakly bound water content of red clay appeared to be reduced to different degrees, while the strongly bound water content was reduced to a lesser extent. The reduction in the weakly bound water led to an increase in the molecular gravitational force between the soil particles. This promoted the agglomeration of the soil particles to form a stronger agglomerate structure, thereby enhancing its mechanical properties. The physical phase analysis of cured soils with different amounts of Consolid system admixture was carried out by X-ray diffraction analysis. No chemical reaction occurred during improvement, but the crystal spacing was reduced. This phenomenon could be a factor improving the shrinkage properties. In addition, the shrinkage properties of the soil improved because of the low number of exchangeable cations on the mineral surface, allowing the cured soil to enter a charge equilibrium state quickly.
This paper discusses efforts made by past researchers to steady the expansive (problematic) soils using mechanical and chemical techniques - specifically with EPS beads, lime and fly ash. Administering swelling of problematic soils is critical for civil engineers to prevent structural distress. This paper summarizes studies on reduction of swelling potential using EPS, lime and fly ash individually. Chemical stabilization with lime and fly ash are conventional methods for expansive soil stabilization, with known merits and demerits. This paper explores the suitability of different materials under various conditions and stabilization mechanisms, including cation exchange, flocculation, and pozzolanic reactions. The degree of stabilization is influenced by various factors such as the type and amount of additives, soil mineralogy, curing temperature, moisture content during molding, and the presence of nano-silica, organic matter, and sulfates. Additionally, expanded polystyrene (EPS) improves structural integrity by compressing when surrounded clay swells, reducing overall swelling. Thus, EPS addresses limitations of chemicals by mechanical means. Combining EPS, lime and fly ash creates a customized system promoting efficient, long-lasting, cost-effective and eco-friendly soil stabilization. Chemicals address EPS limitations like poor stabilization. This paper benefits civil engineers seeking to control expansive soil swelling and prevent structural distress. It indicates potential of an EPS-lime-fly ash system and concludes by identifying research gaps for further work on such combinatorial stabilizer systems.