In order to improve carrot quality and soil nutrition and reduce the environmental pollution caused by intensive carrot production, more comprehensive combined water-fertilizer management strategies are necessary. This study hypothesizes that optimal management of water and fertilizer can improve carrot yield and quality and reduce greenhouse gas emissions and soil nutrient residues. Thus, coordinated water-fertilizer management strategies were tested for carrot production on the North China Plain over two consecutive growing seasons. Four treatments were tested: local standard fertilization and irrigation practices (FNP); optimized irrigation and chemical nitrogen, phosphorus, and potassium fertilizer (OPT); OPT treatment with partial replacement of chemical fertilizer with peanut shell (PS); and OPT treatment with partial replacement of chemical fertilizer with mushroom residue (M). Compared to the FNP treatment, there were statistically significant increases in soluble sugars (12-27%) and free amino acids (14-26%), and decreases in the nitrate content (7-17%) of fleshy root in the OPT, PS, and M treatments. In autumn carrots, the OPT and M treatments decreased yield, whereas PS increased yield; spring carrot yield was significantly decreased in the OPT, PS, and M groups compared to the FNP group. There were no significant effects of the treatment group on carrot growth rates, nutrient accumulation, or nutrient distribution. However, the OPT, PS, and M treatments were associated with significantly increased partial productivity of phosphate fertilizer (233-363%), reduced residual levels of nitrate and available phosphorus in the top 80 cm of soil, and decreased greenhouse gas emissions by 8-18% compared to the FNP treatment. These results highlight the effectiveness of partial organic fertilizer substitution and integrated water-fertilizer management to produce high-quality carrots with minimal environmental damage.
Here, the impact of irrigation using untreated wastewater (WW) on carrots (Daucus carota L.) was examined. We hypothesized that the addition of ethylenediaminetetraacetic acid (EDTA), dry algal powder (Spirulina platensis or Chlorella vulgaris), and Salix alba leaves powder would function as chelators for harmful contaminants in wastewater. The findings showed that irrigation of carrot plants with the sampled untreated wastewater led to significant decreases in the shoot lengths, fresh, dry weights of shoots and roots at stage I, the diameter of roots, pigment content, carotenoids, total soluble carbohydrate content, and soluble protein content. Furthermore, a significantly increased level of proline, total phenols, and the activities of polyphenol oxidase (PPO), peroxidase (POX), superoxide dismutase (SOD), and catalase (CAT) was identified in stage I samples. In contrast to the stage I, the length of the roots, the number of leaves on each plant, wet and dry weights of the stage II roots were all greatly enhanced. In spite of the increased yield due to the wastewater irrigation, carrot roots irrigated with wastewater had significantly more cadmium (Cd), nickel (Ni), cobalt (Co), and lead (Pb) than is considered safe. Our data clearly show that the application of Spirulina platensis, Chlorella vulgaris, EDTA, and leaves powder of salix was able to alleviate the toxicity of wastewater on carrot plants. For example, we recorded a significant decrease in the accumulation of carrot's Cd, Ni, Co, and Pb contents. We conclude that the treatments with Spirulina platensis and Chlorella vulgaris can be utilized as eco-friendly tools to lessen the damaging effects of wastewater irrigation on carrot plants.